|
|
|
import gradio as gr |
|
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification |
|
|
|
model_name = "distilbert-base-uncased" |
|
tokenizer = DistilBertTokenizer.from_pretrained(model_name) |
|
model = DistilBertForSequenceClassification.from_pretrained(model_name) |
|
|
|
def predict_sentiment(text): |
|
|
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class = logits.argmax().item() |
|
|
|
|
|
return {"positive": logits[0][1].item(), "negative": logits[0][0].item()} |
|
|
|
iface = gr.Interface( |
|
fn=predict_sentiment, |
|
inputs=gr.Textbox(), |
|
outputs="label", |
|
|