File size: 4,135 Bytes
6daa3a9
 
47a0e90
6daa3a9
 
 
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
d5099ea
6daa3a9
 
 
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
47a0e90
6daa3a9
 
47a0e90
6daa3a9
 
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
47a0e90
6daa3a9
 
47a0e90
6daa3a9
 
 
 
 
 
 
 
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
47a0e90
6daa3a9
 
47a0e90
6daa3a9
 
47a0e90
6daa3a9
 
 
 
 
 
47a0e90
6daa3a9
 
47a0e90
6daa3a9
47a0e90
6daa3a9
47a0e90
6daa3a9
 
47a0e90
6daa3a9
 
 
 
 
 
 
 
 
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
47a0e90
6daa3a9
 
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
 
 
 
47a0e90
6daa3a9
47a0e90
6daa3a9
 
 
 
47a0e90
6daa3a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
## Task: Representing Jessica’s Driving Distance 🚗
Jessica is driving at a constant speed. She travels **90 miles in 2 hours**.

### Your Goal:
Represent the relationship between **time and distance** using different mathematical models:
✅ Bar Model  
✅ Double Number Line  
✅ Ratio Table  
✅ Graph  

Let’s go through each representation step by step!

---

### Step 1: Identifying Current Representation  
Which representations have you already used to show the relationship between time and distance?  
- Bar Model  
- Double Number Line  
- Ratio Table  
- Graph  

If you haven’t used all of them, let’s go through each one step by step.

---

### Step 2: Bar Model Representation 📊  
Have you created a **bar model** to represent Jessica’s travel?  

**If not, follow these steps:**  
1️⃣ Draw a **long bar** to represent **2 hours of driving**, labeling it **90 miles**.  
2️⃣ Divide the bar into **two equal parts** to show **1 hour = 45 miles**.  
3️⃣ Extend the bar to **3 hours** by adding another **45-mile segment**.  
4️⃣ Divide **one 1-hour segment in half** to show **½ hour = 22.5 miles**.  

✅ Does your bar model correctly show **½, 1, 2, and 3 hours**?

---

### Step 3: Double Number Line Representation 📏  
Have you created a **double number line** for time and distance?  

**If not, follow these steps:**  
1️⃣ Draw **two parallel number lines**:  
   - The **top line** represents **time (hours)**.  
   - The **bottom line** represents **distance (miles)**.  
2️⃣ Mark these key points:  
   - **0 hours → 0 miles**  
   - **½ hour → 22.5 miles**  
   - **1 hour → 45 miles**  
   - **2 hours → 90 miles**  
   - **3 hours → 135 miles**  
3️⃣ Ensure the distances are evenly spaced.  

✅ Does your number line show a **proportional relationship**?

---

### Step 4: Ratio Table Representation 📋  
Have you created a **ratio table**?  

**If not, follow these steps:**  
1️⃣ Fill in the table below:  

| Time (hours) | Distance (miles) |  
|-------------|-----------------|  
| 0.5         | 22.5            |  
| 1           | 45              |  
| 2           | 90              |  
| 3           | 135             |  

2️⃣ Look for patterns.  
3️⃣ What would be the distance for **4 hours**?  

✅ Does your table clearly show a **proportional pattern**?

---

### Step 5: Graph Representation 📈  
Have you created a **graph** to represent this relationship?  

**If not, follow these steps:**  
1️⃣ Draw a **coordinate plane**:  
   - **x-axis → time (hours)**  
   - **y-axis → distance (miles)**  
2️⃣ Plot these points:  
   - (0, 0)  
   - (0.5, 22.5)  
   - (1, 45)  
   - (2, 90)  
   - (3, 135)  
3️⃣ Draw a straight line through these points.  
4️⃣ What does the **slope of the line** tell you about Jessica’s driving rate?  

✅ Does your graph correctly show a **linear relationship**?

---

### Step 6: Final Reflection 💭  
Great job! Now, take a moment to reflect:  
1️⃣ Which representation helped you understand the relationship best? Why?  
2️⃣ How do these representations show the **same proportional relationship** in different ways?  
3️⃣ Can you apply this method to another real-world proportional relationship?  

---

### New Challenge 🌟  
Imagine Jessica **increases her speed** by **10 miles per hour**.  
- How would this affect the bar model, number line, ratio table, and graph?  
- Try adjusting your models to reflect this change!  

---

### Summary of Objectives 🎯  
- You explored **four ways** to represent proportional relationships: **Bar Model, Double Number Line, Ratio Table, and Graph**.  
- You understood how **time and distance** relate at a **constant rate**.  
- You analyzed how different models show the **same mathematical pattern**.  

---

### Common Core Math Standards 🏆  
- **6.RP.A.1** - Understand the concept of a ratio.  
- **6.RP.A.3a** - Use ratio reasoning to solve real-world problems.  
- **7.RP.A.2** - Recognize proportional relationships.  

✅ **Congratulations! You’ve completed this module.** 🚀