Spaces:
Runtime error
Runtime error
File size: 8,226 Bytes
5ed81fc 508b442 5ed81fc 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 5ed81fc 508b442 5ed81fc 508b442 5ed81fc 508b442 5ed81fc 508b442 79d498b 508b442 79d498b 508b442 5ed81fc 79d498b 508b442 5ed81fc 508b442 5ed81fc 508b442 79d498b 5ed81fc 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 5ed81fc 508b442 79d498b 508b442 79d498b 5ed81fc 508b442 5ed81fc 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 508b442 79d498b 5ed81fc 508b442 79d498b 508b442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import os
import cv2
import gradio as gr
import torch
import requests
# ------------------------------------------------------------------------------
# Dependency Management
# ------------------------------------------------------------------------------
# Instead of using os.system to manage dependencies in production,
# it's recommended to use a requirements.txt file.
# For this demo, we ensure that numpy and torchvision are of compatible versions.
os.system("pip install --upgrade 'numpy<2'")
os.system("pip install torchvision==0.12.0") # Fixes: ModuleNotFoundError for torchvision.transforms.functional_tensor
# ------------------------------------------------------------------------------
# Utility Function: Download Weight Files
# ------------------------------------------------------------------------------
def download_file(filename, url):
"""
ELI5: If the file (like a model weight) isn't on your computer, download it!
"""
if not os.path.exists(filename):
print(f"Downloading {filename} from {url}...")
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(filename, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
else:
print(f"Failed to download {filename}")
# ------------------------------------------------------------------------------
# Download Required Model Weights
# ------------------------------------------------------------------------------
weights = {
"realesr-general-x4v3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
"GFPGANv1.2.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
"GFPGANv1.3.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
"GFPGANv1.4.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"RestoreFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth",
"CodeFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth",
}
for filename, url in weights.items():
download_file(filename, url)
# ------------------------------------------------------------------------------
# Import Model-Related Modules After Ensuring Dependencies
# ------------------------------------------------------------------------------
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
# ------------------------------------------------------------------------------
# Initialize ESRGAN Upsampler
# ------------------------------------------------------------------------------
# ELI5: We build a mini brain (model) to help make images look better.
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = torch.cuda.is_available() # Use half-precision if you have a GPU.
upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=0,
tile_pad=10,
pre_pad=0,
half=half
)
# Create output directory for saving enhanced images.
os.makedirs('output', exist_ok=True)
# ------------------------------------------------------------------------------
# Image Inference Function
# ------------------------------------------------------------------------------
def inference(img, version, scale):
"""
ELI5: This function takes your uploaded image, picks a model version,
and a scaling factor. It then:
1. Reads your image.
2. Checks if it's in a special format (like with transparency).
3. Resizes small images for better processing.
4. Uses a face enhancement model (GFPGAN) and a background upscaler (RealESRGAN)
to make the image look better.
5. Optionally resizes the final image.
6. Saves and returns the enhanced image.
"""
try:
# Read the image from the provided file path.
img_path = str(img)
extension = os.path.splitext(os.path.basename(img_path))[1]
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
if img is None:
print("Error: Could not read the image. Please check the file.")
return None, None
# Determine the image mode: RGBA (has transparency) or not.
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2:
# If the image is grayscale, convert it to a color image.
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img_mode = None
else:
img_mode = None
# If the image is too small, double its size.
h, w = img.shape[:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
# Map the selected model version to its weight file.
model_paths = {
'v1.2': 'GFPGANv1.2.pth',
'v1.3': 'GFPGANv1.3.pth',
'v1.4': 'GFPGANv1.4.pth',
'RestoreFormer': 'RestoreFormer.pth',
'CodeFormer': 'CodeFormer.pth',
'RealESR-General-x4v3': 'realesr-general-x4v3.pth'
}
# Initialize GFPGAN for face enhancement.
face_enhancer = GFPGANer(
model_path=model_paths[version],
upscale=2, # Face region upscale factor.
arch='clean' if version.startswith('v1') else version,
channel_multiplier=2,
bg_upsampler=upsampler # Use the ESRGAN upsampler for background.
)
# Enhance the image.
_, _, output = face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True
)
# Optionally, further rescale the enhanced image.
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = output.shape[:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
# Decide on file extension based on image mode.
extension = 'png' if img_mode == 'RGBA' else 'jpg'
save_path = os.path.join('output', f'out.{extension}')
# Save the enhanced image.
cv2.imwrite(save_path, output)
# Convert BGR to RGB for proper display in Gradio.
output_rgb = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output_rgb, save_path
except Exception as error:
print("Error during inference:", error)
return None, None
# ------------------------------------------------------------------------------
# Build the Gradio UI
# ------------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("## 📸 Image Upscaling & Restoration")
gr.Markdown("### Enhance your images using GFPGAN & RealESRGAN with a friendly UI!")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Upload Your Image")
version_selector = gr.Radio(
choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer', 'RealESR-General-x4v3'],
label="Select Model Version",
value="v1.4"
)
scale_factor = gr.Number(value=2, label="Rescaling Factor (e.g., 2 for default)")
enhance_button = gr.Button("Enhance Image 🚀")
with gr.Column():
output_image = gr.Image(type="numpy", label="Enhanced Image")
download_link = gr.File(label="Download Enhanced Image")
# Link the button click to the inference function.
enhance_button.click(
fn=inference,
inputs=[image_input, version_selector, scale_factor],
outputs=[output_image, download_link]
)
# ------------------------------------------------------------------------------
# Launch the Gradio App
# ------------------------------------------------------------------------------
demo.launch()
|