metadata
title: Image To Text App
emoji: 📹
colorFrom: blue
colorTo: red
sdk: streamlit
app_file: app.py
pinned: false
Kidney-disease-classification-mlops
Workflows
- Update config.yaml
- Update secrets.yaml [Optional]
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the dvc.yaml
- app.py
How to run?
STEPS:
Clone the repository
https://github.com/HAKIM-ML/
Kidney-disease-classification-mlops
STEP 01- Create a conda environment after opening the repository
conda create -n cnncls python=3.8 -y
conda activate cnncls
STEP 02- install the requirements
pip install -r requirements.txt
# Finally run the following command
python app.py
Now,
open up you local host and port
MLflow
cmd
- mlflow ui
dagshub
dagshub MLFLOW_TRACKING_URI = https://dagshub.com/azizulhakim8291/Kidney-disease-classification-mlops.mlflow
python script.py
import dagshub dagshub.init(repo_owner='azizulhakim8291', repo_name='Kidney-disease-classification-mlops', mlflow=True)
import mlflow with mlflow.start_run(): mlflow.log_param('parameter name', 'value') mlflow.log_metric('metric name', 1)
DVC cmd
- dvc init
- dvc repro
- dvc dag
About MLflow & DVC
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & taging your model
DVC
- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)