hakim
pipeline added
7195b15
|
raw
history blame
1.72 kB
---
title: Image To Text App
emoji: 📹
colorFrom: blue
colorTo: red
sdk: streamlit
app_file: app.py
pinned: false
---
# Kidney-disease-classification-mlops
## Workflows
1. Update config.yaml
2. Update secrets.yaml [Optional]
3. Update params.yaml
4. Update the entity
5. Update the configuration manager in src config
6. Update the components
7. Update the pipeline
8. Update the main.py
9. Update the dvc.yaml
10. app.py
# How to run?
### STEPS:
Clone the repository
```bash
https://github.com/HAKIM-ML/
Kidney-disease-classification-mlops
```
### STEP 01- Create a conda environment after opening the repository
```bash
conda create -n cnncls python=3.8 -y
```
```bash
conda activate cnncls
```
### STEP 02- install the requirements
```bash
pip install -r requirements.txt
```
```bash
# Finally run the following command
python app.py
```
Now,
```bash
open up you local host and port
```
## MLflow
- [Documentation](https://mlflow.org/docs/latest/index.html)
##### cmd
- mlflow ui
### dagshub
[dagshub](https://dagshub.com/)
MLFLOW_TRACKING_URI = https://dagshub.com/azizulhakim8291/Kidney-disease-classification-mlops.mlflow
python script.py
import dagshub
dagshub.init(repo_owner='azizulhakim8291', repo_name='Kidney-disease-classification-mlops', mlflow=True)
import mlflow
with mlflow.start_run():
mlflow.log_param('parameter name', 'value')
mlflow.log_metric('metric name', 1)
### DVC cmd
1. dvc init
2. dvc repro
3. dvc dag
## About MLflow & DVC
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & taging your model
DVC
- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)