Spaces:
Sleeping
Sleeping
File size: 9,767 Bytes
ae93999 ef5def8 ae93999 ef5def8 ae93999 ef5def8 d204b0e ef5def8 d204b0e ef5def8 d204b0e ae93999 d204b0e ef5def8 ae93999 d204b0e ef5def8 ae93999 ef5def8 ae93999 ef5def8 d204b0e ae93999 ef5def8 13f67e0 ef5def8 323f73f ef5def8 323f73f ef5def8 6d1e1df ef5def8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import sys
import traceback
import gradio as gr
import cv2 as cv
import numpy as np
import time
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from utils import blinkRatio,LEFT_EYE,RIGHT_EYE,LEFT_IRIS,RIGHT_IRIS
def custom_excepthook(type, value, tb):
traceback.print_exception(type, value, tb)
sys.__excepthook__(type, value, tb)
sys.excepthook = custom_excepthook
def list_overlay_images(directory):
return [f for f in os.listdir(directory) if f.endswith('.png')]
def process_frame(frame, overlay, results, frame_timestamp_ms=None, task='image', alpha=None):
if results.face_landmarks:
rgba_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGBA)
height, width = rgba_frame.shape[:2]
zero_overlay = np.zeros_like(rgba_frame)
mesh_points = np.array([np.multiply([p.x, p.y],
[width, height]).astype(int) for p in results.face_landmarks[0]])
iris_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
iris_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
_, re_ratio, le_ratio = blinkRatio(frame, mesh_points, RIGHT_EYE, LEFT_EYE)
(l_cx, l_cy), l_radius = cv.minEnclosingCircle(mesh_points[LEFT_IRIS])
(r_cx, r_cy), r_radius = cv.minEnclosingCircle(mesh_points[RIGHT_IRIS])
center_left = (int(l_cx), int(l_cy))
center_right = (int(r_cx), int(r_cy))
cv.circle(iris_mask_left, center_left, int(l_radius), (255, 0, 0, 255), -1, cv.LINE_AA)
cv.circle(iris_mask_right, center_right, int(r_radius), (255, 0, 0, 255), -1, cv.LINE_AA)
bbx_size_l = int((l_radius * 2) / 2)
bbx_size_r = int((r_radius * 2) / 2)
resized_overlay_l = cv.resize(overlay, (bbx_size_l * 2, bbx_size_l * 2), interpolation=cv.INTER_CUBIC)
resized_overlay_r = cv.resize(overlay, (bbx_size_r * 2, bbx_size_r * 2), interpolation=cv.INTER_CUBIC)
y1_r = center_right[1] - bbx_size_r
y2_r = center_right[1] + bbx_size_r
x1_r = center_right[0] - bbx_size_r
x2_r = center_right[0] + bbx_size_r
y1_l = center_left[1] - bbx_size_l
y2_l = center_left[1] + bbx_size_l
x1_l = center_left[0] - bbx_size_l
x2_l = center_left[0] + bbx_size_l
if (resized_overlay_l.shape == zero_overlay[y1_l:y2_l, x1_l:x2_l].shape) & (le_ratio < 5.0) & (le_ratio > 2.0):
zero_overlay[y1_l:y2_l, x1_l:x2_l] = resized_overlay_l
if (resized_overlay_r.shape == zero_overlay[y1_r:y2_r, x1_r:x2_r].shape) & (re_ratio < 5.0) & (re_ratio > 2.0):
zero_overlay[y1_r:y2_r, x1_r:x2_r] = resized_overlay_r
eye_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
eye_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
cv.fillPoly(eye_mask_left, [mesh_points[LEFT_EYE]], (255, 0, 0, 255))
cv.fillPoly(eye_mask_right, [mesh_points[RIGHT_EYE]], (255, 0, 0, 255))
zero_overlay[np.where((iris_mask_left[:, :, 3] > 0) & (eye_mask_left[:, :, 3] == 0))] = 0
zero_overlay[np.where((iris_mask_right[:, :, 3] > 0) & (eye_mask_right[:, :, 3] == 0))] = 0
rgba_frame = cv.addWeighted(rgba_frame, 1, zero_overlay, alpha, 0)
return rgba_frame
def process_image(input_image, overlay_file, alpha=0.3):
model_path = os.path.join(os.getcwd(),'face_landmarker.task')
BaseOptions = mp.tasks.BaseOptions
FaceLandmarker = mp.tasks.vision.FaceLandmarker
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode
options = FaceLandmarkerOptions(
base_options=BaseOptions(model_asset_path=model_path),
running_mode=VisionRunningMode.IMAGE)
with FaceLandmarker.create_from_options(options) as landmarker:
overlay_file = overlay_file + '.png'
overlay_path = os.path.join(os.getcwd(),'overlays', overlay_file)
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
frame = np.array(input_image)
if frame.dtype != np.uint8:
frame = (frame * 255).astype(np.uint8)
rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
mp_frame = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
results = landmarker.detect(mp_frame)
processed_frame = process_frame(frame=frame, overlay=overlay, results=results, alpha=alpha)
return cv.cvtColor(processed_frame, cv.COLOR_BGR2RGB)
def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', output_frame_rate=30):
model_path = os.path.join(os.getcwd(), 'face_landmarker.task')
BaseOptions = mp.tasks.BaseOptions
FaceLandmarker = mp.tasks.vision.FaceLandmarker
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode
options = FaceLandmarkerOptions(
base_options=BaseOptions(model_asset_path=model_path),
running_mode=VisionRunningMode.VIDEO)
with FaceLandmarker.create_from_options(options) as landmarker:
overlay_file = overlay_file + '.png'
overlay_path = os.path.join(os.getcwd(), 'overlays', overlay_file)
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
cap = cv.VideoCapture(input_video)
output_path = os.path.join(os.getcwd(), f'video_processed.{output_format}')
if overlay is not None and cap.isOpened():
fps = int(output_frame_rate) if output_frame_rate > 0 else cap.get(cv.CAP_PROP_FPS)
h, w = None, None
new_h, new_w = None, None
frame_idx = 0
fourcc = cv.VideoWriter_fourcc(*'mp4v' if output_format == 'mp4' else 'MJPG')
out = cv.VideoWriter(output_path, fourcc, fps, (new_w, new_h))
start_time = time.time()
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if h is None or w is None:
h, w, _ = frame.shape
new_h = 800
new_w = int((w / h) * new_h)
out = cv.VideoWriter(output_path, fourcc, fps, (new_w, new_h)) # Initialize output writer with correct size
frame = cv.resize(frame, (new_w, new_h), interpolation=cv.INTER_NEAREST)
if frame.dtype != np.uint8:
frame = (frame * 255).astype(np.uint8)
rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
mp_frame = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
timestamp = int(frame_idx * 1000 / fps) # Convert frame index to milliseconds
results = landmarker.detect_for_video(mp_frame, timestamp)
processed_frame = process_frame(frame=frame, overlay=overlay, results=results, alpha=alpha)
processed_frame = cv.cvtColor(processed_frame, cv.COLOR_RGBA2BGR)
out.write(processed_frame)
frame_idx += 1
cap.release()
out.release()
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
return output_path
def process_webcam(frame, overlay_file, alpha=0.3, min_detection_confidence=0.5, min_tracking_confidence=0.5):
BaseOptions = mp.tasks.BaseOptions
FaceLandmarker = mp.tasks.vision.FaceLandmarker
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
FaceLandmarkerResult = mp.tasks.vision.FaceLandmarkerResult
VisionRunningMode = mp.tasks.vision.RunningMode
model_path = os.path.join(os.getcwd(), 'face_landmarker.task')
overlay_file = overlay_file + '.png'
overlay_path = os.path.join(os.getcwd(), overlay_file)
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
global latest_results
latest_results = None
def return_result(result: FaceLandmarkerResult, output_image: mp.Image, timestamp_ms: int):
global latest_results
latest_results = result
options = FaceLandmarkerOptions(
base_options=BaseOptions(model_asset_path=model_path),
running_mode=VisionRunningMode.LIVE_STREAM,
result_callback=return_result)
with FaceLandmarker.create_from_options(options) as landmarker:
timestamp_ms = int(time.time() * 1000) # Current time in milliseconds
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
landmarker.detect_async(mp_image, timestamp_ms)
while latest_results is None:
time.sleep(0.01) # Wait for the result to be available
processed_frame = process_frame(frame, overlay, latest_results, alpha)
return processed_frame
overlay_dir = os.path.join(os.getcwd(),'overlays')
overlay_files = list_overlay_images(overlay_dir)
overlay_choices = [x.split('.png')[0] for x in overlay_files]
overlay_file = gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")
image_interface = gr.Interface(
process_image,
[gr.Image(height=500,label="Upload Image"),
gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")],
gr.Image(height=500),
)
video_interface = gr.Interface(
process_video,
[gr.Video(height=500,label="Upload Video"),
gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")],
gr.Video(height=500,label="Processed Video"),
)
webcam_interface = gr.Interface(
process_webcam,
[gr.Image(sources=["webcam"], streaming=True),
gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")],
"image",
live=True
)
demo = gr.TabbedInterface([image_interface,video_interface],['Image','Video'])
demo.launch()
|