File size: 9,767 Bytes
ae93999
 
 
 
 
 
ef5def8
ae93999
ef5def8
 
 
 
 
 
ae93999
 
 
 
 
 
 
 
 
 
ef5def8
 
 
 
d204b0e
 
ef5def8
d204b0e
 
ef5def8
d204b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae93999
d204b0e
ef5def8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae93999
d204b0e
ef5def8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae93999
 
ef5def8
 
 
 
 
 
 
 
 
 
ae93999
 
ef5def8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d204b0e
ae93999
 
 
 
 
ef5def8
 
13f67e0
ef5def8
323f73f
ef5def8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323f73f
 
 
ef5def8
6d1e1df
ef5def8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import sys
import traceback
import gradio as gr
import cv2 as cv
import numpy as np
import time
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision

from utils import blinkRatio,LEFT_EYE,RIGHT_EYE,LEFT_IRIS,RIGHT_IRIS



def custom_excepthook(type, value, tb):
    traceback.print_exception(type, value, tb)
    sys.__excepthook__(type, value, tb)

sys.excepthook = custom_excepthook

def list_overlay_images(directory):
    return [f for f in os.listdir(directory) if f.endswith('.png')]

def process_frame(frame, overlay, results, frame_timestamp_ms=None, task='image', alpha=None):
    if results.face_landmarks:
        rgba_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGBA)
        height, width = rgba_frame.shape[:2]
        zero_overlay = np.zeros_like(rgba_frame)
        mesh_points = np.array([np.multiply([p.x, p.y],
                [width, height]).astype(int) for p in results.face_landmarks[0]])
        iris_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
        iris_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
        _, re_ratio, le_ratio = blinkRatio(frame, mesh_points, RIGHT_EYE, LEFT_EYE)
        (l_cx, l_cy), l_radius = cv.minEnclosingCircle(mesh_points[LEFT_IRIS])
        (r_cx, r_cy), r_radius = cv.minEnclosingCircle(mesh_points[RIGHT_IRIS])
        center_left = (int(l_cx), int(l_cy))
        center_right = (int(r_cx), int(r_cy))
        cv.circle(iris_mask_left, center_left, int(l_radius), (255, 0, 0, 255), -1, cv.LINE_AA)
        cv.circle(iris_mask_right, center_right, int(r_radius), (255, 0, 0, 255), -1, cv.LINE_AA)
        bbx_size_l = int((l_radius * 2) / 2)
        bbx_size_r = int((r_radius * 2) / 2)
        resized_overlay_l = cv.resize(overlay, (bbx_size_l * 2, bbx_size_l * 2), interpolation=cv.INTER_CUBIC)
        resized_overlay_r = cv.resize(overlay, (bbx_size_r * 2, bbx_size_r * 2), interpolation=cv.INTER_CUBIC)
        y1_r = center_right[1] - bbx_size_r
        y2_r = center_right[1] + bbx_size_r
        x1_r = center_right[0] - bbx_size_r
        x2_r = center_right[0] + bbx_size_r
        y1_l = center_left[1] - bbx_size_l
        y2_l = center_left[1] + bbx_size_l
        x1_l = center_left[0] - bbx_size_l
        x2_l = center_left[0] + bbx_size_l
        if (resized_overlay_l.shape == zero_overlay[y1_l:y2_l, x1_l:x2_l].shape) & (le_ratio < 5.0) & (le_ratio > 2.0):
            zero_overlay[y1_l:y2_l, x1_l:x2_l] = resized_overlay_l
        if (resized_overlay_r.shape == zero_overlay[y1_r:y2_r, x1_r:x2_r].shape) & (re_ratio < 5.0) & (re_ratio > 2.0):
            zero_overlay[y1_r:y2_r, x1_r:x2_r] = resized_overlay_r
        eye_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
        eye_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
        cv.fillPoly(eye_mask_left, [mesh_points[LEFT_EYE]], (255, 0, 0, 255))
        cv.fillPoly(eye_mask_right, [mesh_points[RIGHT_EYE]], (255, 0, 0, 255))
        zero_overlay[np.where((iris_mask_left[:, :, 3] > 0) & (eye_mask_left[:, :, 3] == 0))] = 0
        zero_overlay[np.where((iris_mask_right[:, :, 3] > 0) & (eye_mask_right[:, :, 3] == 0))] = 0
        rgba_frame = cv.addWeighted(rgba_frame, 1, zero_overlay, alpha, 0)
    return rgba_frame

def process_image(input_image, overlay_file, alpha=0.3):
    model_path = os.path.join(os.getcwd(),'face_landmarker.task')
    BaseOptions = mp.tasks.BaseOptions
    FaceLandmarker = mp.tasks.vision.FaceLandmarker
    FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
    VisionRunningMode = mp.tasks.vision.RunningMode
    options = FaceLandmarkerOptions(
        base_options=BaseOptions(model_asset_path=model_path),
        running_mode=VisionRunningMode.IMAGE)
    with FaceLandmarker.create_from_options(options) as landmarker:
        overlay_file = overlay_file + '.png'
        overlay_path = os.path.join(os.getcwd(),'overlays', overlay_file)
        overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
        frame = np.array(input_image)
        if frame.dtype != np.uint8:
            frame = (frame * 255).astype(np.uint8)
        rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
        mp_frame = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
        results = landmarker.detect(mp_frame)
        processed_frame = process_frame(frame=frame, overlay=overlay, results=results, alpha=alpha)
        return cv.cvtColor(processed_frame, cv.COLOR_BGR2RGB)

def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', output_frame_rate=30):
    model_path = os.path.join(os.getcwd(), 'face_landmarker.task')
    BaseOptions = mp.tasks.BaseOptions
    FaceLandmarker = mp.tasks.vision.FaceLandmarker
    FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
    VisionRunningMode = mp.tasks.vision.RunningMode
    options = FaceLandmarkerOptions(
        base_options=BaseOptions(model_asset_path=model_path),
        running_mode=VisionRunningMode.VIDEO)
    
    with FaceLandmarker.create_from_options(options) as landmarker:
        overlay_file = overlay_file + '.png'
        overlay_path = os.path.join(os.getcwd(), 'overlays', overlay_file)
        overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
        cap = cv.VideoCapture(input_video)
        output_path = os.path.join(os.getcwd(), f'video_processed.{output_format}')
        
        if overlay is not None and cap.isOpened():
            fps = int(output_frame_rate) if output_frame_rate > 0 else cap.get(cv.CAP_PROP_FPS)
            h, w = None, None
            new_h, new_w = None, None
            frame_idx = 0
            fourcc = cv.VideoWriter_fourcc(*'mp4v' if output_format == 'mp4' else 'MJPG')
            out = cv.VideoWriter(output_path, fourcc, fps, (new_w, new_h))
            start_time = time.time()

            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                if h is None or w is None:
                    h, w, _ = frame.shape
                    new_h = 800
                    new_w = int((w / h) * new_h)
                    out = cv.VideoWriter(output_path, fourcc, fps, (new_w, new_h))  # Initialize output writer with correct size
                frame = cv.resize(frame, (new_w, new_h), interpolation=cv.INTER_NEAREST)
                if frame.dtype != np.uint8:
                    frame = (frame * 255).astype(np.uint8)
                rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
                mp_frame = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
                timestamp = int(frame_idx * 1000 / fps)  # Convert frame index to milliseconds
                results = landmarker.detect_for_video(mp_frame, timestamp)
                processed_frame = process_frame(frame=frame, overlay=overlay, results=results, alpha=alpha)
                processed_frame = cv.cvtColor(processed_frame, cv.COLOR_RGBA2BGR)
                out.write(processed_frame)
                frame_idx += 1

            cap.release()
            out.release()

            end_time = time.time()
            execution_time = end_time - start_time
            print(f"Execution time: {execution_time} seconds")

        return output_path


def process_webcam(frame, overlay_file, alpha=0.3, min_detection_confidence=0.5, min_tracking_confidence=0.5):
    BaseOptions = mp.tasks.BaseOptions
    FaceLandmarker = mp.tasks.vision.FaceLandmarker
    FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
    FaceLandmarkerResult = mp.tasks.vision.FaceLandmarkerResult
    VisionRunningMode = mp.tasks.vision.RunningMode

    model_path = os.path.join(os.getcwd(), 'face_landmarker.task')
    overlay_file = overlay_file + '.png'
    overlay_path = os.path.join(os.getcwd(), overlay_file)
    overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)

    global latest_results
    latest_results = None

    def return_result(result: FaceLandmarkerResult, output_image: mp.Image, timestamp_ms: int):
        global latest_results
        latest_results = result

    options = FaceLandmarkerOptions(
        base_options=BaseOptions(model_asset_path=model_path),
        running_mode=VisionRunningMode.LIVE_STREAM,
        result_callback=return_result)

    with FaceLandmarker.create_from_options(options) as landmarker:
        timestamp_ms = int(time.time() * 1000)  # Current time in milliseconds
        mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
        landmarker.detect_async(mp_image, timestamp_ms)

        while latest_results is None:
            time.sleep(0.01)  # Wait for the result to be available

        processed_frame = process_frame(frame, overlay, latest_results, alpha)
        return processed_frame



overlay_dir = os.path.join(os.getcwd(),'overlays')
overlay_files = list_overlay_images(overlay_dir)
overlay_choices = [x.split('.png')[0] for x in overlay_files]


overlay_file = gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")
image_interface = gr.Interface(
    process_image, 
    [gr.Image(height=500,label="Upload Image"),
    gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")], 
    gr.Image(height=500),
)

video_interface = gr.Interface(
    process_video, 
    [gr.Video(height=500,label="Upload Video"),
    gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")], 
    gr.Video(height=500,label="Processed Video"),
)

webcam_interface = gr.Interface(
    process_webcam, 
    [gr.Image(sources=["webcam"], streaming=True),
    gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")], 
    "image",
    live=True
)

demo = gr.TabbedInterface([image_interface,video_interface],['Image','Video'])


demo.launch()