Spaces:
Running
Running
File size: 40,172 Bytes
cedbbde 0557713 7f6d86d 688106d 5e2a70f 688106d 627c408 2554a3e 7f6d86d 7aaa5b1 7f6d86d 627c408 7aaa5b1 627c408 7aaa5b1 7f6d86d 627c408 2554a3e 7f6d86d 2554a3e 7f6d86d 2554a3e 627c408 e277165 688106d 295c6bd 688106d c3d240e 9fa51a8 cedbbde 688106d 6f3a331 41cab3e dd17964 688106d 41cab3e dd17964 41cab3e 688106d dd17964 688106d 327e651 1f4e612 327e651 1f4e612 327e651 3a578d2 c9cb1b6 327e651 688106d 6f3a331 1f4e612 688106d 1f4e612 688106d c9cb1b6 688106d 319103f 1f4e612 319103f 1f4e612 319103f 688106d 1f4e612 688106d 7f5b38a 688106d 1f4e612 dd17964 688106d c9cb1b6 688106d 1f4e612 688106d 1f4e612 688106d 41cab3e 688106d 1f4e612 688106d 41cab3e 688106d 6f3a331 1f4e612 688106d 1f4e612 688106d c9cb1b6 688106d 6f3a331 1f4e612 688106d 1f4e612 688106d c9cb1b6 688106d 6f3a331 688106d 1f4e612 688106d 1f4e612 688106d 1f4e612 dd17964 688106d dd17964 688106d 6f3a331 1f4e612 6f3a331 1f4e612 688106d c9cb1b6 688106d 6f3a331 688106d 41cab3e 1f4e612 688106d 1f4e612 688106d 41cab3e 6f3a331 35b5720 6f3a331 688106d 41cab3e 688106d 41cab3e 688106d 41cab3e 688106d 7aaa5b1 688106d 7f6d86d 7aaa5b1 7f6d86d 1f4e612 7f6d86d 1f4e612 7f6d86d 7c303e1 7aaa5b1 e2ae8ef a06de5e 211c6a7 a2f31d9 7aaa5b1 7f6d86d 7c303e1 7aaa5b1 7f6d86d 7c303e1 7aaa5b1 e2ae8ef a06de5e 211c6a7 a2f31d9 7aaa5b1 7f6d86d 688106d cedbbde 7aaa5b1 7c303e1 7aaa5b1 fee23e7 7f6d86d fee23e7 7aaa5b1 7c303e1 7aaa5b1 fee23e7 688106d 1f4e612 688106d 41cab3e 688106d 6f3a331 688106d 6f3a331 688106d 41cab3e 688106d dd17964 688106d dd17964 688106d b408888 688106d b408888 dd17964 b408888 dd17964 b408888 85aeb48 b7257cc 85aeb48 b408888 688106d 6f3a331 688106d b408888 08a98f6 1f4e612 08a98f6 1f4e612 08a98f6 1f4e612 08a98f6 b408888 d1327f1 7c303e1 d1327f1 1f4e612 d1327f1 1f4e612 d1327f1 688106d cb0e2e9 47712b5 c1c031f 47712b5 c1c031f 1f4e612 c1c031f 1f4e612 c1c031f 1f4e612 c1c031f 1f4e612 47712b5 17d8a3e c1c031f 1f4e612 c1c031f 1f4e612 c1c031f 1f4e612 c1c031f 47712b5 c1c031f 1f4e612 c1c031f 47712b5 f972a12 cb0e2e9 f972a12 1f4e612 f972a12 1f4e612 dd17964 f972a12 1f4e612 f972a12 c9cb1b6 f972a12 1f4e612 f972a12 dd17964 f972a12 cb0e2e9 9fa51a8 cb0e2e9 e68c63f 1f4e612 e68c63f 1f4e612 e68c63f aea0528 e68c63f aea0528 e68c63f aea0528 688106d 15fbc5f cb0e2e9 e68c63f 7f6d86d 2ca2654 e68c63f 2ca2654 41cab3e 688106d fe36e3a e68c63f a1e142a e68c63f 41cab3e fe36e3a e68c63f 85aeb48 41cab3e e68c63f aea0528 e68c63f aea0528 e68c63f aea0528 e68c63f aea0528 2ca2654 cb0e2e9 d3ad40f 688106d 15fbc5f 688106d cb0e2e9 688106d cb0e2e9 688106d 6f3a331 688106d 6f3a331 41cab3e 688106d 6f3a331 41cab3e 688106d d3b42d5 941b663 688106d 2ca2654 a369299 311797d a369299 cedbbde a369299 688106d 15fbc5f eefdfef 15fbc5f eefdfef 15fbc5f eefdfef 688106d eefdfef 688106d 6e5f7ce fe36e3a 15fbc5f c3d240e fe36e3a 688106d 6f3a331 6e5f7ce 688106d 15fbc5f 688106d 15fbc5f 688106d 6518f83 1f4e612 c3d54db c3d240e c3d54db 688106d 6518f83 688106d b18ab5a 1f4e612 b18ab5a 1f4e612 b18ab5a 1f4e612 b18ab5a 1f4e612 b18ab5a cedbbde b18ab5a cedbbde 1f4e612 cedbbde b18ab5a cedbbde 1f4e612 78cf882 cedbbde 78cf882 e0d94cd ea010a7 e0d94cd 78cf882 ea010a7 cedbbde b18ab5a 5e2a70f b18ab5a 5e2a70f cedbbde 5e2a70f a369299 de38458 3662fae de38458 ecc6ae8 de38458 ecc6ae8 7b70a53 121e6ac ecc6ae8 15fbc5f fe36e3a 1f4e612 fe36e3a ecc6ae8 121e6ac eefdfef ecc6ae8 121e6ac 15fbc5f ecc6ae8 121e6ac fe36e3a 92088a8 7b70a53 2f6f790 7b70a53 92088a8 ecc6ae8 4df12c1 7b70a53 ecc6ae8 15fbc5f ecc6ae8 7f6d86d 22540af 7f6d86d 22540af 1f4e612 ecc6ae8 ac2e8e0 ecc6ae8 02e2655 eefdfef 15fbc5f 2ca2654 02e2655 ecc6ae8 574628b 02e2655 ecc6ae8 02e2655 ecc6ae8 fe36e3a 1f4e612 fe36e3a 92088a8 ecc6ae8 92088a8 2f6f790 92088a8 2f6f790 2b01937 2f6f790 2b01937 22540af 7f6d86d 13409d1 2b01937 db9be07 2b01937 92088a8 7f6d86d 22540af 7f6d86d 22540af 1f4e612 92088a8 2b01937 87afd92 22540af 2b01937 92088a8 ecc6ae8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 |
import Optim
import Printf: @printf
import Random: shuffle!, randperm
const maxdegree = 2
const actualMaxsize = maxsize + maxdegree
# Sum of square error between two arrays
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
diff = (x - y)
return sum(diff .* diff)
end
function SSE(x::Nothing, y::Array{Float32})::Float32
return 1f9
end
# Sum of square error between two arrays, with weights
function SSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
diff = (x - y)
return sum(diff .* diff .* w)
end
function SSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
return Nothing
end
# Mean of square error between two arrays
function MSE(x::Nothing, y::Array{Float32})::Float32
return 1f9
end
# Mean of square error between two arrays
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
return SSE(x, y)/size(x)[1]
end
# Mean of square error between two arrays
function MSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
return 1f9
end
# Mean of square error between two arrays
function MSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
return SSE(x, y, w)/sum(w)
end
const len = size(X)[1]
if weighted
const avgy = sum(y .* weights)/sum(weights)
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy), weights)
else
const avgy = sum(y)/len
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy))
end
function id(x::Float32)::Float32
x
end
const nuna = size(unaops)[1]
const nbin = size(binops)[1]
const nops = nuna + nbin
const nvar = size(X)[2];
function debug(verbosity, string...)
verbosity > 0 ? println(string...) : nothing
end
function getTime()::Integer
return round(Integer, 1e3*(time()-1.6e9))
end
# Define a serialization format for the symbolic equations:
mutable struct Node
#Holds operators, variables, constants in a tree
degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc.
val::Union{Float32, Integer} #Either const value, or enumerates variable
constant::Bool #false if variable
op::Integer #enumerates operator (separately for degree=1,2)
l::Union{Node, Nothing}
r::Union{Node, Nothing}
Node(val::Float32) = new(0, val, true, 1, nothing, nothing)
Node(val::Integer) = new(0, val, false, 1, nothing, nothing)
Node(op::Integer, l::Node) = new(1, 0.0f0, false, op, l, nothing)
Node(op::Integer, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing)
Node(op::Integer, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r)
#Allow to pass the leaf value without additional node call:
Node(op::Integer, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r)
Node(op::Integer, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r))
Node(op::Integer, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r))
end
# Copy an equation (faster than deepcopy)
function copyNode(tree::Node)::Node
if tree.degree == 0
return Node(tree.val)
elseif tree.degree == 1
return Node(tree.op, copyNode(tree.l))
else
return Node(tree.op, copyNode(tree.l), copyNode(tree.r))
end
end
# Count the operators, constants, variables in an equation
function countNodes(tree::Node)::Integer
if tree.degree == 0
return 1
elseif tree.degree == 1
return 1 + countNodes(tree.l)
else
return 1 + countNodes(tree.l) + countNodes(tree.r)
end
end
# Count the max depth of a tree
function countDepth(tree::Node)::Integer
if tree.degree == 0
return 1
elseif tree.degree == 1
return 1 + countDepth(tree.l)
else
return 1 + max(countDepth(tree.l), countDepth(tree.r))
end
end
# Convert an equation to a string
function stringTree(tree::Node)::String
if tree.degree == 0
if tree.constant
return string(tree.val)
else
if useVarMap
return varMap[tree.val]
else
return "x$(tree.val - 1)"
end
end
elseif tree.degree == 1
return "$(unaops[tree.op])($(stringTree(tree.l)))"
else
return "$(binops[tree.op])($(stringTree(tree.l)), $(stringTree(tree.r)))"
end
end
# Print an equation
function printTree(tree::Node)
println(stringTree(tree))
end
# Return a random node from the tree
function randomNode(tree::Node)::Node
if tree.degree == 0
return tree
end
a = countNodes(tree)
b = 0
c = 0
if tree.degree >= 1
b = countNodes(tree.l)
end
if tree.degree == 2
c = countNodes(tree.r)
end
i = rand(1:1+b+c)
if i <= b
return randomNode(tree.l)
elseif i == b + 1
return tree
end
return randomNode(tree.r)
end
# Count the number of unary operators in the equation
function countUnaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 1 + countUnaryOperators(tree.l)
else
return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r)
end
end
# Count the number of binary operators in the equation
function countBinaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 0 + countBinaryOperators(tree.l)
else
return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r)
end
end
# Count the number of operators in the equation
function countOperators(tree::Node)::Integer
return countUnaryOperators(tree) + countBinaryOperators(tree)
end
# Randomly convert an operator into another one (binary->binary;
# unary->unary)
function mutateOperator(tree::Node)::Node
if countOperators(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree == 0
node = randomNode(tree)
end
if node.degree == 1
node.op = rand(1:length(unaops))
else
node.op = rand(1:length(binops))
end
return tree
end
# Count the number of constants in an equation
function countConstants(tree::Node)::Integer
if tree.degree == 0
return convert(Integer, tree.constant)
elseif tree.degree == 1
return 0 + countConstants(tree.l)
else
return 0 + countConstants(tree.l) + countConstants(tree.r)
end
end
# Randomly perturb a constant
function mutateConstant(
tree::Node, T::Float32,
probNegate::Float32=0.01f0)::Node
# T is between 0 and 1.
if countConstants(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree != 0 || node.constant == false
node = randomNode(tree)
end
bottom = 0.1f0
maxChange = perturbationFactor * T + 1.0f0 + bottom
factor = maxChange^Float32(rand())
makeConstBigger = rand() > 0.5
if makeConstBigger
node.val *= factor
else
node.val /= factor
end
if rand() > probNegate
node.val *= -1
end
return tree
end
# Evaluate an equation over an array of datapoints
function evalTreeArray(tree::Node)::Union{Array{Float32, 1}, Nothing}
return evalTreeArray(tree, X)
end
# Evaluate an equation over an array of datapoints
function evalTreeArray(tree::Node, cX::Array{Float32, 2})::Union{Array{Float32, 1}, Nothing}
clen = size(cX)[1]
if tree.degree == 0
if tree.constant
return fill(tree.val, clen)
else
return copy(cX[:, tree.val])
end
elseif tree.degree == 1
cumulator = evalTreeArray(tree.l, cX)
if cumulator === nothing
return nothing
end
op_idx = tree.op
UNAOP!(cumulator, op_idx, clen)
@inbounds for i=1:clen
if isinf(cumulator[i]) || isnan(cumulator[i])
return nothing
end
end
return cumulator
else
cumulator = evalTreeArray(tree.l, cX)
if cumulator === nothing
return nothing
end
array2 = evalTreeArray(tree.r, cX)
if array2 === nothing
return nothing
end
op_idx = tree.op
BINOP!(cumulator, array2, op_idx, clen)
@inbounds for i=1:clen
if isinf(cumulator[i]) || isnan(cumulator[i])
return nothing
end
end
return cumulator
end
end
# Score an equation
function scoreFunc(tree::Node)::Float32
prediction = evalTreeArray(tree)
if prediction === nothing
return 1f9
end
if weighted
mse = MSE(prediction, y, weights)
else
mse = MSE(prediction, y)
end
return mse / baselineMSE + countNodes(tree)*parsimony
end
# Score an equation with a small batch
function scoreFuncBatch(tree::Node)::Float32
# batchSize
batch_idx = randperm(len)[1:batchSize]
batch_X = X[batch_idx, :]
prediction = evalTreeArray(tree, batch_X)
if prediction === nothing
return 1f9
end
size_adjustment = 1f0
batch_y = y[batch_idx]
if weighted
batch_w = weights[batch_idx]
mse = MSE(prediction, batch_y, batch_w)
size_adjustment = 1f0 * len / batchSize
else
mse = MSE(prediction, batch_y)
end
return size_adjustment * mse / baselineMSE + countNodes(tree)*parsimony
end
# Add a random unary/binary operation to the end of a tree
function appendRandomOp(tree::Node)::Node
node = randomNode(tree)
while node.degree != 0
node = randomNode(tree)
end
choice = rand()
makeNewBinOp = choice < nbin/nops
if rand() > 0.5
left = Float32(randn())
else
left = rand(1:nvar)
end
if rand() > 0.5
right = Float32(randn())
else
right = rand(1:nvar)
end
if makeNewBinOp
newnode = Node(
rand(1:length(binops)),
left,
right
)
else
newnode = Node(
rand(1:length(unaops)),
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
# Insert random node
function insertRandomOp(tree::Node)::Node
node = randomNode(tree)
choice = rand()
makeNewBinOp = choice < nbin/nops
left = copyNode(node)
if makeNewBinOp
right = randomConstantNode()
newnode = Node(
rand(1:length(binops)),
left,
right
)
else
newnode = Node(
rand(1:length(unaops)),
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
# Add random node to the top of a tree
function prependRandomOp(tree::Node)::Node
node = tree
choice = rand()
makeNewBinOp = choice < nbin/nops
left = copyNode(tree)
if makeNewBinOp
right = randomConstantNode()
newnode = Node(
rand(1:length(binops)),
left,
right
)
else
newnode = Node(
rand(1:length(unaops)),
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return node
end
function randomConstantNode()::Node
if rand() > 0.5
val = Float32(randn())
else
val = rand(1:nvar)
end
newnode = Node(val)
return newnode
end
# Return a random node from the tree with parent
function randomNodeAndParent(tree::Node, parent::Union{Node, Nothing})::Tuple{Node, Union{Node, Nothing}}
if tree.degree == 0
return tree, parent
end
a = countNodes(tree)
b = 0
c = 0
if tree.degree >= 1
b = countNodes(tree.l)
end
if tree.degree == 2
c = countNodes(tree.r)
end
i = rand(1:1+b+c)
if i <= b
return randomNodeAndParent(tree.l, tree)
elseif i == b + 1
return tree, parent
end
return randomNodeAndParent(tree.r, tree)
end
# Select a random node, and replace it an the subtree
# with a variable or constant
function deleteRandomOp(tree::Node)::Node
node, parent = randomNodeAndParent(tree, nothing)
isroot = (parent === nothing)
if node.degree == 0
# Replace with new constant
newnode = randomConstantNode()
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
elseif node.degree == 1
# Join one of the children with the parent
if isroot
return node.l
elseif parent.l == node
parent.l = node.l
else
parent.r = node.l
end
else
# Join one of the children with the parent
if rand() < 0.5
if isroot
return node.l
elseif parent.l == node
parent.l = node.l
else
parent.r = node.l
end
else
if isroot
return node.r
elseif parent.l == node
parent.l = node.r
else
parent.r = node.r
end
end
end
return tree
end
# Simplify tree
function combineOperators(tree::Node)::Node
# NOTE: (const (+*-) const) already accounted for. Call simplifyTree before.
# ((const + var) + const) => (const + var)
# ((const * var) * const) => (const * var)
# ((const - var) - const) => (const - var)
# (want to add anything commutative!)
# TODO - need to combine plus/sub if they are both there.
if tree.degree == 0
return tree
elseif tree.degree == 1
tree.l = combineOperators(tree.l)
elseif tree.degree == 2
tree.l = combineOperators(tree.l)
tree.r = combineOperators(tree.r)
end
top_level_constant = tree.degree == 2 && (tree.l.constant || tree.r.constant)
if tree.degree == 2 && (binops[tree.op] === mult || binops[tree.op] === plus) && top_level_constant
op = tree.op
# Put the constant in r. Need to assume var in left for simplification assumption.
if tree.l.constant
tmp = tree.r
tree.r = tree.l
tree.l = tmp
end
topconstant = tree.r.val
# Simplify down first
below = tree.l
if below.degree == 2 && below.op == op
if below.l.constant
tree = below
tree.l.val = binops[op](tree.l.val, topconstant)
elseif below.r.constant
tree = below
tree.r.val = binops[op](tree.r.val, topconstant)
end
end
end
if tree.degree == 2 && binops[tree.op] === sub && top_level_constant
# Currently just simplifies subtraction. (can't assume both plus and sub are operators)
# Not commutative, so use different op.
if tree.l.constant
if tree.r.degree == 2 && binops[tree.r.op] === sub
if tree.r.l.constant
#(const - (const - var)) => (var - const)
l = tree.l
r = tree.r
simplified_const = -(l.val - r.l.val) #neg(sub(l.val, r.l.val))
tree.l = tree.r.r
tree.r = l
tree.r.val = simplified_const
elseif tree.r.r.constant
#(const - (var - const)) => (const - var)
l = tree.l
r = tree.r
simplified_const = l.val + r.r.val #plus(l.val, r.r.val)
tree.r = tree.r.l
tree.l.val = simplified_const
end
end
else #tree.r.constant is true
if tree.l.degree == 2 && binops[tree.l.op] === sub
if tree.l.l.constant
#((const - var) - const) => (const - var)
l = tree.l
r = tree.r
simplified_const = l.l.val - r.val#sub(l.l.val, r.val)
tree.r = tree.l.r
tree.l = r
tree.l.val = simplified_const
elseif tree.l.r.constant
#((var - const) - const) => (var - const)
l = tree.l
r = tree.r
simplified_const = r.val + l.r.val #plus(r.val, l.r.val)
tree.l = tree.l.l
tree.r.val = simplified_const
end
end
end
end
return tree
end
# Simplify tree
function simplifyTree(tree::Node)::Node
if tree.degree == 1
tree.l = simplifyTree(tree.l)
if tree.l.degree == 0 && tree.l.constant
return Node(unaops[tree.op](tree.l.val))
end
elseif tree.degree == 2
tree.l = simplifyTree(tree.l)
tree.r = simplifyTree(tree.r)
constantsBelow = (
tree.l.degree == 0 && tree.l.constant &&
tree.r.degree == 0 && tree.r.constant
)
if constantsBelow
return Node(binops[tree.op](tree.l.val, tree.r.val))
end
end
return tree
end
# Define a member of population by equation, score, and age
mutable struct PopMember
tree::Node
score::Float32
birth::Integer
PopMember(t::Node) = new(t, scoreFunc(t), getTime())
PopMember(t::Node, score::Float32) = new(t, score, getTime())
end
# Check if any binary operator are overly complex
function flagBinOperatorComplexity(tree::Node, op::Int)::Bool
if tree.degree == 0
return false
elseif tree.degree == 1
return flagBinOperatorComplexity(tree.l, op)
else
if tree.op == op
overly_complex = (
((bin_constraints[op][1] > -1) &&
(countNodes(tree.l) > bin_constraints[op][1]))
||
((bin_constraints[op][2] > -1) &&
(countNodes(tree.r) > bin_constraints[op][2]))
)
if overly_complex
return true
end
end
return (flagBinOperatorComplexity(tree.l, op) || flagBinOperatorComplexity(tree.r, op))
end
end
# Check if any unary operators are overly complex
function flagUnaOperatorComplexity(tree::Node, op::Int)::Bool
if tree.degree == 0
return false
elseif tree.degree == 1
if tree.op == op
overly_complex = (
(una_constraints[op] > -1) &&
(countNodes(tree.l) > una_constraints[op])
)
if overly_complex
return true
end
end
return flagUnaOperatorComplexity(tree.l, op)
else
return (flagUnaOperatorComplexity(tree.l, op) || flagUnaOperatorComplexity(tree.r, op))
end
end
# Go through one simulated annealing mutation cycle
# exp(-delta/T) defines probability of accepting a change
function iterate(member::PopMember, T::Float32, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1})::PopMember
prev = member.tree
tree = prev
#TODO - reconsider this
if batching
beforeLoss = scoreFuncBatch(prev)
else
beforeLoss = member.score
end
mutationChoice = rand()
#More constants => more likely to do constant mutation
weightAdjustmentMutateConstant = min(8, countConstants(prev))/8.0
cur_weights = copy(mutationWeights) .* 1.0
cur_weights[1] *= weightAdjustmentMutateConstant
n = countNodes(prev)
depth = countDepth(prev)
# If equation too big, don't add new operators
if n >= curmaxsize || depth >= maxdepth
cur_weights[3] = 0.0
cur_weights[4] = 0.0
end
cur_weights /= sum(cur_weights)
cweights = cumsum(cur_weights)
successful_mutation = false
#TODO: Currently we dont take this \/ into account
is_success_always_possible = true
attempts = 0
max_attempts = 10
#############################################
# Mutations
#############################################
while (!successful_mutation) && attempts < max_attempts
tree = copyNode(prev)
successful_mutation = true
if mutationChoice < cweights[1]
tree = mutateConstant(tree, T)
is_success_always_possible = true
# Mutating a constant shouldn't invalidate an already-valid function
elseif mutationChoice < cweights[2]
tree = mutateOperator(tree)
is_success_always_possible = true
# Can always mutate to the same operator
elseif mutationChoice < cweights[3]
if rand() < 0.5
tree = appendRandomOp(tree)
else
tree = prependRandomOp(tree)
end
is_success_always_possible = false
# Can potentially have a situation without success
elseif mutationChoice < cweights[4]
tree = insertRandomOp(tree)
is_success_always_possible = false
elseif mutationChoice < cweights[5]
tree = deleteRandomOp(tree)
is_success_always_possible = true
elseif mutationChoice < cweights[6]
tree = simplifyTree(tree) # Sometimes we simplify tree
tree = combineOperators(tree) # See if repeated constants at outer levels
return PopMember(tree, beforeLoss)
is_success_always_possible = true
# Simplification shouldn't hurt complexity; unless some non-symmetric constraint
# to commutative operator...
elseif mutationChoice < cweights[7]
tree = genRandomTree(5) # Sometimes we generate a new tree completely tree
is_success_always_possible = true
else # no mutation applied
return PopMember(tree, beforeLoss)
end
# Check for illegal equations
for i=1:nbin
if successful_mutation && flagBinOperatorComplexity(tree, i)
successful_mutation = false
end
end
for i=1:nuna
if successful_mutation && flagUnaOperatorComplexity(tree, i)
successful_mutation = false
end
end
attempts += 1
end
#############################################
if !successful_mutation
return PopMember(copyNode(prev), beforeLoss)
end
if batching
afterLoss = scoreFuncBatch(tree)
else
afterLoss = scoreFunc(tree)
end
if annealing
delta = afterLoss - beforeLoss
probChange = exp(-delta/(T*alpha))
if useFrequency
oldSize = countNodes(prev)
newSize = countNodes(tree)
probChange *= frequencyComplexity[oldSize] / frequencyComplexity[newSize]
end
return_unaltered = (isnan(afterLoss) || probChange < rand())
if return_unaltered
return PopMember(copyNode(prev), beforeLoss)
end
end
return PopMember(tree, afterLoss)
end
# Create a random equation by appending random operators
function genRandomTree(length::Integer)::Node
tree = Node(1.0f0)
for i=1:length
tree = appendRandomOp(tree)
end
return tree
end
# A list of members of the population, with easy constructors,
# which allow for random generation of new populations
mutable struct Population
members::Array{PopMember, 1}
n::Integer
Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1])
Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop)
Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop)
end
# Sample 10 random members of the population, and make a new one
function samplePop(pop::Population)::Population
idx = rand(1:pop.n, ns)
return Population(pop.members[idx])
end
# Sample the population, and get the best member from that sample
function bestOfSample(pop::Population)::PopMember
sample = samplePop(pop)
best_idx = argmin([sample.members[member].score for member=1:sample.n])
return sample.members[best_idx]
end
function finalizeScores(pop::Population)::Population
need_recalculate = batching
if need_recalculate
@inbounds @simd for member=1:pop.n
pop.members[member].score = scoreFunc(pop.members[member].tree)
end
end
return pop
end
# Return best 10 examples
function bestSubPop(pop::Population; topn::Integer=10)::Population
best_idx = sortperm([pop.members[member].score for member=1:pop.n])
return Population(pop.members[best_idx[1:topn]])
end
# Pass through the population several times, replacing the oldest
# with the fittest of a small subsample
function regEvolCycle(pop::Population, T::Float32, curmaxsize::Integer,
frequencyComplexity::Array{Float32, 1})::Population
# Batch over each subsample. Can give 15% improvement in speed; probably moreso for large pops.
# but is ultimately a different algorithm than regularized evolution, and might not be
# as good.
if fast_cycle
shuffle!(pop.members)
n_evol_cycles = round(Integer, pop.n/ns)
babies = Array{PopMember}(undef, n_evol_cycles)
# Iterate each ns-member sub-sample
@inbounds Threads.@threads for i=1:n_evol_cycles
best_score = Inf32
best_idx = 1+(i-1)*ns
# Calculate best member of the subsample:
for sub_i=1+(i-1)*ns:i*ns
if pop.members[sub_i].score < best_score
best_score = pop.members[sub_i].score
best_idx = sub_i
end
end
allstar = pop.members[best_idx]
babies[i] = iterate(allstar, T, curmaxsize, frequencyComplexity)
end
# Replace the n_evol_cycles-oldest members of each population
@inbounds for i=1:n_evol_cycles
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = babies[i]
end
else
for i=1:round(Integer, pop.n/ns)
allstar = bestOfSample(pop)
baby = iterate(allstar, T, curmaxsize, frequencyComplexity)
#printTree(baby.tree)
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = baby
end
end
return pop
end
# Cycle through regularized evolution many times,
# printing the fittest equation every 10% through
function run(
pop::Population,
ncycles::Integer,
curmaxsize::Integer,
frequencyComplexity::Array{Float32, 1};
verbosity::Integer=0
)::Population
allT = LinRange(1.0f0, 0.0f0, ncycles)
for iT in 1:size(allT)[1]
if annealing
pop = regEvolCycle(pop, allT[iT], curmaxsize, frequencyComplexity)
else
pop = regEvolCycle(pop, 1.0f0, curmaxsize, frequencyComplexity)
end
if verbosity > 0 && (iT % verbosity == 0)
bestPops = bestSubPop(pop)
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
bestCurScore = bestPops.members[bestCurScoreIdx].score
debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
end
end
return pop
end
# Get all the constants from a tree
function getConstants(tree::Node)::Array{Float32, 1}
if tree.degree == 0
if tree.constant
return [tree.val]
else
return Float32[]
end
elseif tree.degree == 1
return getConstants(tree.l)
else
both = [getConstants(tree.l), getConstants(tree.r)]
return [constant for subtree in both for constant in subtree]
end
end
# Set all the constants inside a tree
function setConstants(tree::Node, constants::Array{Float32, 1})
if tree.degree == 0
if tree.constant
tree.val = constants[1]
end
elseif tree.degree == 1
setConstants(tree.l, constants)
else
numberLeft = countConstants(tree.l)
setConstants(tree.l, constants)
setConstants(tree.r, constants[numberLeft+1:end])
end
end
# Proxy function for optimization
function optFunc(x::Array{Float32, 1}, tree::Node)::Float32
setConstants(tree, x)
return scoreFunc(tree)
end
# Use Nelder-Mead to optimize the constants in an equation
function optimizeConstants(member::PopMember)::PopMember
nconst = countConstants(member.tree)
if nconst == 0
return member
end
x0 = getConstants(member.tree)
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree)
if size(x0)[1] == 1
algorithm = Optim.Newton
else
algorithm = Optim.NelderMead
end
try
result = Optim.optimize(f, x0, algorithm(), Optim.Options(iterations=100))
# Try other initial conditions:
for i=1:nrestarts
tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), algorithm(), Optim.Options(iterations=100))
if tmpresult.minimum < result.minimum
result = tmpresult
end
end
if Optim.converged(result)
setConstants(member.tree, result.minimizer)
member.score = convert(Float32, result.minimum)
member.birth = getTime()
else
setConstants(member.tree, x0)
end
catch error
# Fine if optimization encountered domain error, just return x0
if isa(error, AssertionError)
setConstants(member.tree, x0)
else
throw(error)
end
end
return member
end
# List of the best members seen all time
mutable struct HallOfFame
members::Array{PopMember, 1}
exists::Array{Bool, 1} #Whether it has been set
# Arranged by complexity - store one at each.
HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize])
end
# Check for errors before they happen
function testConfiguration()
test_input = LinRange(-100f0, 100f0, 99)
try
for left in test_input
for right in test_input
for binop in binops
test_output = binop.(left, right)
end
end
for unaop in unaops
test_output = unaop.(left)
end
end
catch error
@printf("\n\nYour configuration is invalid - one of your operators is not well-defined over the real line.\n\n\n")
throw(error)
end
end
function fullRun(niterations::Integer;
npop::Integer=300,
ncyclesperiteration::Integer=3000,
fractionReplaced::Float32=0.1f0,
verbosity::Integer=0,
topn::Integer=10
)
testConfiguration()
# 1. Start a population on every process
allPops = Future[]
# Set up a channel to send finished populations back to head node
channels = [RemoteChannel(1) for j=1:npopulations]
bestSubPops = [Population(1) for j=1:npopulations]
hallOfFame = HallOfFame()
frequencyComplexity = ones(Float32, actualMaxsize)
curmaxsize = 3
if warmupMaxsize == 0
curmaxsize = maxsize
end
for i=1:npopulations
future = @spawnat :any Population(npop, 3)
push!(allPops, future)
end
# # 2. Start the cycle on every process:
@sync for i=1:npopulations
@async allPops[i] = @spawnat :any run(fetch(allPops[i]), ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity)
end
println("Started!")
cycles_complete = npopulations * niterations
curmaxsize += 1
last_print_time = time()
num_equations = 0.0
print_every_n_seconds = 5
equation_speed = Float32[]
for i=1:npopulations
# Start listening for each population to finish:
@async put!(channels[i], fetch(allPops[i]))
end
while cycles_complete > 0
@inbounds for i=1:npopulations
# Non-blocking check if a population is ready:
if isready(channels[i])
# Take the fetch operation from the channel since its ready
cur_pop = take!(channels[i])
bestSubPops[i] = bestSubPop(cur_pop, topn=topn)
#Try normal copy...
bestPops = Population([member for pop in bestSubPops for member in pop.members])
for member in cur_pop.members
size = countNodes(member.tree)
frequencyComplexity[size] += 1
if member.score < hallOfFame.members[size].score
hallOfFame.members[size] = deepcopy(member)
hallOfFame.exists[size] = true
end
end
# Dominating pareto curve - must be better than all simpler equations
dominating = PopMember[]
open(hofFile, "w") do io
println(io,"Complexity|MSE|Equation")
for size=1:actualMaxsize
if hallOfFame.exists[size]
member = hallOfFame.members[size]
if weighted
curMSE = MSE(evalTreeArray(member.tree), y, weights)
else
curMSE = MSE(evalTreeArray(member.tree), y)
end
numberSmallerAndBetter = 0
for i=1:(size-1)
if weighted
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights)
else
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y)
end
if (hallOfFame.exists[size] && curMSE > hofMSE)
numberSmallerAndBetter += 1
end
end
betterThanAllSmaller = (numberSmallerAndBetter == 0)
if betterThanAllSmaller
println(io, "$size|$(curMSE)|$(stringTree(member.tree))")
push!(dominating, member)
end
end
end
end
cp(hofFile, hofFile*".bkup", force=true)
# Try normal copy otherwise.
if migration
for k in rand(1:npop, round(Integer, npop*fractionReplaced))
to_copy = rand(1:size(bestPops.members)[1])
cur_pop.members[k] = PopMember(
copyNode(bestPops.members[to_copy].tree),
bestPops.members[to_copy].score)
end
end
if hofMigration && size(dominating)[1] > 0
for k in rand(1:npop, round(Integer, npop*fractionReplacedHof))
# Copy in case one gets used twice
to_copy = rand(1:size(dominating)[1])
cur_pop.members[k] = PopMember(
copyNode(dominating[to_copy].tree)
)
end
end
@async begin
allPops[i] = @spawnat :any let
tmp_pop = run(cur_pop, ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity)
@inbounds @simd for j=1:tmp_pop.n
if rand() < 0.1
tmp_pop.members[j].tree = simplifyTree(tmp_pop.members[j].tree)
tmp_pop.members[j].tree = combineOperators(tmp_pop.members[j].tree)
if shouldOptimizeConstants
tmp_pop.members[j] = optimizeConstants(tmp_pop.members[j])
end
end
end
tmp_pop = finalizeScores(tmp_pop)
tmp_pop
end
put!(channels[i], fetch(allPops[i]))
end
cycles_complete -= 1
cycles_elapsed = npopulations * niterations - cycles_complete
if warmupMaxsize != 0 && cycles_elapsed % warmupMaxsize == 0
curmaxsize += 1
if curmaxsize > maxsize
curmaxsize = maxsize
end
end
num_equations += ncyclesperiteration * npop / 10.0
end
end
sleep(1e-3)
elapsed = time() - last_print_time
#Update if time has passed, and some new equations generated.
if elapsed > print_every_n_seconds && num_equations > 0.0
# Dominating pareto curve - must be better than all simpler equations
current_speed = num_equations/elapsed
average_over_m_measurements = 10 #for print_every...=5, this gives 50 second running average
push!(equation_speed, current_speed)
if length(equation_speed) > average_over_m_measurements
deleteat!(equation_speed, 1)
end
average_speed = sum(equation_speed)/length(equation_speed)
@printf("\n")
@printf("Cycles per second: %.3e\n", round(average_speed, sigdigits=3))
@printf("Hall of Fame:\n")
@printf("-----------------------------------------\n")
@printf("%-10s %-8s %-8s %-8s\n", "Complexity", "MSE", "Score", "Equation")
curMSE = baselineMSE
@printf("%-10d %-8.3e %-8.3e %-.f\n", 0, curMSE, 0f0, avgy)
lastMSE = curMSE
lastComplexity = 0
for size=1:actualMaxsize
if hallOfFame.exists[size]
member = hallOfFame.members[size]
if weighted
curMSE = MSE(evalTreeArray(member.tree), y, weights)
else
curMSE = MSE(evalTreeArray(member.tree), y)
end
numberSmallerAndBetter = 0
for i=1:(size-1)
if weighted
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights)
else
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y)
end
if (hallOfFame.exists[size] && curMSE > hofMSE)
numberSmallerAndBetter += 1
end
end
betterThanAllSmaller = (numberSmallerAndBetter == 0)
if betterThanAllSmaller
delta_c = size - lastComplexity
delta_l_mse = log(curMSE/lastMSE)
score = convert(Float32, -delta_l_mse/delta_c)
@printf("%-10d %-8.3e %-8.3e %-s\n" , size, curMSE, score, stringTree(member.tree))
lastMSE = curMSE
lastComplexity = size
end
end
end
debug(verbosity, "")
last_print_time = time()
num_equations = 0.0
end
end
end
|