File size: 8,418 Bytes
cfca8a4
69c3f28
cfca8a4
9b9db9e
a3a2513
 
cfca8a4
7b7f087
90049bc
 
 
 
dcb0894
90049bc
 
dcb0894
 
 
90049bc
dcb0894
 
 
90049bc
35b5720
c7ce1c2
009c407
90049bc
 
a1e142a
 
7b7f087
 
 
 
 
dcb0894
7b7f087
 
 
 
 
2e104cc
7b7f087
 
 
 
 
 
35b5720
4854265
7b7f087
 
a95ae71
7b7f087
cfca8a4
333f394
 
 
 
 
012bfcc
 
 
333f394
 
012bfcc
333f394
 
012bfcc
333f394
012bfcc
333f394
012bfcc
 
 
 
333f394
012bfcc
333f394
012bfcc
 
 
 
 
333f394
012bfcc
 
2e104cc
012bfcc
 
 
333f394
012bfcc
333f394
012bfcc
333f394
012bfcc
333f394
012bfcc
 
 
 
 
333f394
c27a9c8
a3a2513
333f394
4ff119b
a3a2513
 
 
 
 
 
b66d8de
a3a2513
a95ae71
a1e142a
 
 
 
 
a95ae71
a3a2513
 
 
b66d8de
cfca8a4
0c0aff7
 
 
226786e
 
 
 
 
 
 
 
 
 
 
 
35b5720
 
226786e
 
 
 
2e104cc
226786e
 
 
 
 
cfca8a4
 
a3a2513
 
 
 
 
 
226786e
 
cfca8a4
 
0c0aff7
cfca8a4
ea4213e
0c0aff7
cfca8a4
 
0c0aff7
a3a2513
cfca8a4
7ef6388
cfca8a4
0c0aff7
a3a2513
4854265
 
e6db1f3
a3a2513
 
4854265
 
 
 
 
a3a2513
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd

# Dumped from hyperparam optimization
default_alpha =                  1.0#0.1
default_fractionReplaced =      0.10
default_fractionReplacedHof =   0.10
default_npop =                  1000
default_weightAddNode =            1
default_weightInsertNode =         3
default_weightDeleteNode =         3
default_weightMutateConstant =    10
default_weightMutateOperator =     1
default_weightRandomize =          1
default_weightSimplify =        0.01
default_weightDoNothing =          1
default_result =                   1
default_topn =                    10
default_parsimony =              1e-4
default_perturbationFactor =     1.0

def pysr(X=None, y=None, threads=4,
            niterations=100,
            ncyclesperiteration=300,
            binary_operators=["plus", "mult"],
            unary_operators=["cos", "exp", "sin"],
            alpha=default_alpha,
            annealing=True,
            fractionReplaced=default_fractionReplaced,
            fractionReplacedHof=default_fractionReplacedHof,
            npop=int(default_npop),
            parsimony=default_parsimony,
            migration=True,
            hofMigration=True,
            shouldOptimizeConstants=True,
            topn=int(default_topn),
            weightAddNode=default_weightAddNode,
            weightInsertNode=default_weightInsertNode,
            weightDeleteNode=default_weightDeleteNode,
            weightDoNothing=default_weightDoNothing,
            weightMutateConstant=default_weightMutateConstant,
            weightMutateOperator=default_weightMutateOperator,
            weightRandomize=default_weightRandomize,
            weightSimplify=default_weightSimplify,
            perturbationFactor=default_perturbationFactor,
            timeout=None,
            equation_file='hall_of_fame.csv',
            test='simple1',
            verbosity=1e9,
            maxsize=20,
        ):
    """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
    Note: most default parameters have been tuned over several example
    equations, but you should adjust `threads`, `niterations`,
    `binary_operators`, `unary_operators` to your requirements.

    :param X: np.ndarray, 2D array. Rows are examples, columns are features.
    :param y: np.ndarray, 1D array. Rows are examples.
    :param threads: int, Number of threads (=number of populations running).
        You can have more threads than cores - it actually makes it more
        efficient.
    :param niterations: int, Number of iterations of the algorithm to run. The best
        equations are printed, and migrate between populations, at the
        end of each.
    :param ncyclesperiteration: int, Number of total mutations to run, per 10
        samples of the population, per iteration.
    :param binary_operators: list, List of strings giving the binary operators
        in Julia's Base, or in `operator.jl`.
    :param unary_operators: list, Same but for operators taking a single `Float32`.
    :param alpha: float, Initial temperature.
    :param annealing: bool, Whether to use annealing. You should (and it is default).
    :param fractionReplaced: float, How much of population to replace with migrating
        equations from other populations.
    :param fractionReplacedHof: float, How much of population to replace with migrating
        equations from hall of fame.
    :param npop: int, Number of individuals in each population
    :param parsimony: float, Multiplicative factor for how much to punish complexity.
    :param migration: bool, Whether to migrate.
    :param hofMigration: bool, Whether to have the hall of fame migrate.
    :param shouldOptimizeConstants: bool, Whether to numerically optimize
        constants (Nelder-Mead/Newton) at the end of each iteration.
    :param topn: int, How many top individuals migrate from each population.
    :param weightAddNode: float, Relative likelihood for mutation to add a node
    :param weightInsertNode: float, Relative likelihood for mutation to insert a node
    :param weightDeleteNode: float, Relative likelihood for mutation to delete a node
    :param weightDoNothing: float, Relative likelihood for mutation to leave the individual
    :param weightMutateConstant: float, Relative likelihood for mutation to change
        the constant slightly in a random direction.
    :param weightMutateOperator: float, Relative likelihood for mutation to swap
        an operator.
    :param weightRandomize: float, Relative likelihood for mutation to completely
        delete and then randomly generate the equation
    :param weightSimplify: float, Relative likelihood for mutation to simplify
        constant parts by evaluation
    :param timeout: float, Time in seconds to timeout search
    :param equation_file: str, Where to save the files (.csv separated by |)
    :param test: str, What test to run, if X,y not passed.
    :param maxsize: int, Max size of an equation.
    :returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
        (as strings).

    """

    rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'

    if isinstance(binary_operators, str): binary_operators = [binary_operators]
    if isinstance(unary_operators, str): unary_operators = [unary_operators]

    if X is None:
        if test == 'simple1':
            eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
        elif test == 'simple2':
            eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
        elif test == 'simple3':
            eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
        elif test == 'simple4':
            eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
        elif test == 'simple5':
            eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"

        X = np.random.randn(100, 5)*3
        y = eval(eval_str)
        print("Running on", eval_str)

    pkg_directory = '/'.join(__file__.split('/')[:-2] + ['/julia'])

    def_hyperparams = f"""include("{pkg_directory}/operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nthreads = {threads:d}
const perturbationFactor = {perturbationFactor:f}f0
const annealing = {"true" if annealing else "false"}
const mutationWeights = [
    {weightMutateConstant:f},
    {weightMutateOperator:f},
    {weightAddNode:f},
    {weightInsertNode:f},
    {weightDeleteNode:f},
    {weightSimplify:f},
    {weightRandomize:f},
    {weightDoNothing:f}
]
    """

    assert len(X.shape) == 2
    assert len(y.shape) == 1

    X_str = str(X.tolist()).replace('],', '];').replace(',', '')
    y_str = str(y.tolist())

    def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})""""
    """

    with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f:
        print(def_hyperparams, file=f)

    with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f:
        print(def_datasets, file=f)


    command = [
        'julia -O3',
        '--threads auto',
        '-e',
        f'\'include("/tmp/.hyperparams_{rand_string}.jl"); include("/tmp/.dataset_{rand_string}.jl"); include("{pkg_directory}/sr.jl"); fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})\'',
        ]
    if timeout is not None:
        command = [f'timeout {timeout}'] + command
    cur_cmd = ' '.join(command)
    print("Running on", cur_cmd)
    os.system(cur_cmd)
    try:
        output = pd.read_csv(equation_file, sep="|")
    except FileNotFoundError:
        print("Couldn't find equation file!")
        output = pd.DataFrame()
    return output