Spaces:
Running
Running
File size: 23,491 Bytes
cedbbde 688106d 5e2a70f 688106d 627c408 c4bc4e3 627c408 688106d 295c6bd 688106d c3d240e a1e142a cedbbde 688106d 6f3a331 41cab3e 688106d 41cab3e 6f3a331 41cab3e 688106d 6f3a331 688106d 327e651 688106d 6f3a331 688106d 6f3a331 688106d c27a9c8 688106d 41cab3e 688106d 41cab3e 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 41cab3e 688106d 41cab3e 6f3a331 688106d 41cab3e 688106d 41cab3e 688106d 41cab3e 688106d cf95c4d 41cab3e cf95c4d 41cab3e cf95c4d 41cab3e cf95c4d 41cab3e 688106d cedbbde 6f3a331 c4bc4e3 6f3a331 b13cd33 6f3a331 688106d 41cab3e 688106d 6f3a331 688106d 6f3a331 688106d 41cab3e 688106d b408888 688106d b408888 688106d 6f3a331 688106d b408888 08a98f6 b408888 d1327f1 688106d 47712b5 f972a12 688106d 4ff119b d3ad40f 688106d 58f63a3 327e651 41cab3e 688106d a1e142a 327e651 a1e142a b364345 41cab3e 688106d b364345 2e104cc f972a12 2e104cc f972a12 47712b5 f972a12 2e104cc 16c9195 d3b42d5 f972a12 688106d 41cab3e d3ad40f cedbbde 688106d 483a583 327e651 688106d d3ad40f 688106d 6f3a331 688106d 6f3a331 3c89246 41cab3e a1e142a 5e2a70f 688106d 6f3a331 41cab3e 688106d 6f3a331 41cab3e 688106d d3b42d5 941b663 688106d a369299 311797d a369299 cedbbde a369299 688106d d3ad40f 688106d d3ad40f cf95c4d a1e142a 688106d cedbbde a1e142a 688106d d3ad40f 7d1a81e d3ad40f b364345 688106d 6e5f7ce 6f3a331 c3d54db c3d240e 6e5f7ce 688106d 6f3a331 6e5f7ce 688106d d3ad40f 688106d d3ad40f 688106d 6518f83 c3d240e c3d54db c3d240e c3d54db 688106d 6518f83 688106d b18ab5a cedbbde b18ab5a cedbbde b18ab5a cedbbde a595f09 cedbbde a1e142a cedbbde b18ab5a 5e2a70f b18ab5a 5e2a70f cedbbde 5e2a70f a369299 c3d240e 311797d c3d240e 382662a cedbbde 382662a 5e2a70f 382662a c3d240e cedbbde f872f99 16c9195 cedbbde 382662a 2a2a517 382662a cedbbde 5e2a70f 258a1b4 5e2a70f 258a1b4 5e2a70f 3f4ce91 627c408 3f4ce91 ea6850d 3f4ce91 ea6850d 3f4ce91 5e2a70f 3f4ce91 5e2a70f 9c27796 382662a 5e2a70f 7d1a81e 5e2a70f 382662a b364345 5e2a70f 311797d 5e2a70f 7d1a81e 5e2a70f 311797d 5e2a70f 6e5f7ce 9c27796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
import Optim
const maxdegree = 2
const actualMaxsize = maxsize + maxdegree
# Sum of square error between two arrays
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
diff = (x - y)
return sum(diff .* diff)
end
# Mean of square error between two arrays
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
return SSE(x, y)/size(x)[1]
end
const len = size(X)[1]
const avgy = sum(y)/len
const baselineSSE = SSE(y, convert(Array{Float32, 1}, ones(len) .* avgy))
id = (x,) -> x
const nuna = size(unaops)[1]
const nbin = size(binops)[1]
const nops = nuna + nbin
const nvar = size(X)[2];
function debug(verbosity, string...)
verbosity > 0 ? println(string...) : nothing
end
function getTime()::Int32
return round(Int32, 1e3*(time()-1.6e9))
end
# Define a serialization format for the symbolic equations:
mutable struct Node
#Holds operators, variables, constants in a tree
degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc.
val::Union{Float32, Integer} #Either const value, or enumerates variable
constant::Bool #false if variable
op::Function #enumerates operator (for degree=1,2)
l::Union{Node, Nothing}
r::Union{Node, Nothing}
Node(val::Float32) = new(0, val, true, id, nothing, nothing)
Node(val::Integer) = new(0, val, false, id, nothing, nothing)
Node(op, l::Node) = new(1, 0.0f0, false, op, l, nothing)
Node(op, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing)
Node(op, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r)
#Allow to pass the leaf value without additional node call:
Node(op, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r)
Node(op, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r))
Node(op, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r))
end
# Copy an equation (faster than deepcopy)
function copyNode(tree::Node)::Node
if tree.degree == 0
return Node(tree.val)
elseif tree.degree == 1
return Node(tree.op, copyNode(tree.l))
else
return Node(tree.op, copyNode(tree.l), copyNode(tree.r))
end
end
# Evaluate a symbolic equation:
function evalTree(tree::Node, x::Array{Float32, 1}=Float32[])::Float32
if tree.degree == 0
if tree.constant
return tree.val
else
return x[tree.val]
end
elseif tree.degree == 1
return tree.op(evalTree(tree.l, x))
else
return tree.op(evalTree(tree.l, x), evalTree(tree.r, x))
end
end
# Count the operators, constants, variables in an equation
function countNodes(tree::Node)::Integer
if tree.degree == 0
return 1
elseif tree.degree == 1
return 1 + countNodes(tree.l)
else
return 1 + countNodes(tree.l) + countNodes(tree.r)
end
end
# Convert an equation to a string
function stringTree(tree::Node)::String
if tree.degree == 0
if tree.constant
return string(tree.val)
else
return "x$(tree.val - 1)"
end
elseif tree.degree == 1
return "$(tree.op)($(stringTree(tree.l)))"
else
return "$(tree.op)($(stringTree(tree.l)), $(stringTree(tree.r)))"
end
end
# Print an equation
function printTree(tree::Node)
println(stringTree(tree))
end
# Return a random node from the tree
function randomNode(tree::Node)::Node
if tree.degree == 0
return tree
end
a = countNodes(tree)
b = 0
c = 0
if tree.degree >= 1
b = countNodes(tree.l)
end
if tree.degree == 2
c = countNodes(tree.r)
end
i = rand(1:1+b+c)
if i <= b
return randomNode(tree.l)
elseif i == b + 1
return tree
end
return randomNode(tree.r)
end
# Count the number of unary operators in the equation
function countUnaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 1 + countUnaryOperators(tree.l)
else
return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r)
end
end
# Count the number of binary operators in the equation
function countBinaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 0 + countBinaryOperators(tree.l)
else
return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r)
end
end
# Count the number of operators in the equation
function countOperators(tree::Node)::Integer
return countUnaryOperators(tree) + countBinaryOperators(tree)
end
# Randomly convert an operator into another one (binary->binary;
# unary->unary)
function mutateOperator(tree::Node)::Node
if countOperators(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree == 0
node = randomNode(tree)
end
if node.degree == 1
node.op = unaops[rand(1:length(unaops))]
else
node.op = binops[rand(1:length(binops))]
end
return tree
end
# Count the number of constants in an equation
function countConstants(tree::Node)::Integer
if tree.degree == 0
return convert(Integer, tree.constant)
elseif tree.degree == 1
return 0 + countConstants(tree.l)
else
return 0 + countConstants(tree.l) + countConstants(tree.r)
end
end
# Randomly perturb a constant
function mutateConstant(
tree::Node, T::Float32,
probNegate::Float32=0.01f0)::Node
# T is between 0 and 1.
if countConstants(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree != 0 || node.constant == false
node = randomNode(tree)
end
bottom = 0.1f0
maxChange = T + 1.0f0 + bottom
factor = maxChange^Float32(rand())
makeConstBigger = rand() > 0.5
if makeConstBigger
node.val *= factor
else
node.val /= factor
end
if rand() > probNegate
node.val *= -1
end
return tree
end
# Evaluate an equation over an array of datapoints
function evalTreeArray(tree::Node)::Array{Float32, 1}
if tree.degree == 0
if tree.constant
return ones(Float32, len) .* tree.val
else
return ones(Float32, len) .* X[:, tree.val]
end
elseif tree.degree == 1
return tree.op.(evalTreeArray(tree.l))
else
return tree.op.(evalTreeArray(tree.l), evalTreeArray(tree.r))
end
end
# Score an equation
function scoreFunc(tree::Node)::Float32
try
return SSE(evalTreeArray(tree), y)/baselineSSE + countNodes(tree)*parsimony
catch error
if isa(error, DomainError)
return 1f9
else
throw(error)
end
end
end
# Add a random unary/binary operation to the end of a tree
function appendRandomOp(tree::Node)::Node
node = randomNode(tree)
while node.degree != 0
node = randomNode(tree)
end
choice = rand()
makeNewBinOp = choice < nbin/nops
if rand() > 0.5
left = Float32(randn())
else
left = rand(1:nvar)
end
if rand() > 0.5
right = Float32(randn())
else
right = rand(1:nvar)
end
if makeNewBinOp
newnode = Node(
binops[rand(1:length(binops))],
left,
right
)
else
newnode = Node(
unaops[rand(1:length(unaops))],
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
# Add random node to the top of a tree
function popRandomOp(tree::Node)::Node
node = tree
choice = rand()
makeNewBinOp = choice < nbin/nops
left = tree
if makeNewBinOp
right = randomConstantNode()
newnode = Node(
binops[rand(1:length(binops))],
left,
right
)
else
newnode = Node(
unaops[rand(1:length(unaops))],
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return node
end
# Insert random node
function insertRandomOp(tree::Node)::Node
node = randomNode(tree)
choice = rand()
makeNewBinOp = choice < nbin/nops
left = copyNode(node)
if makeNewBinOp
right = randomConstantNode()
newnode = Node(
binops[rand(1:length(binops))],
left,
right
)
else
newnode = Node(
unaops[rand(1:length(unaops))],
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
function randomConstantNode()::Node
if rand() > 0.5
val = Float32(randn())
else
val = rand(1:nvar)
end
newnode = Node(val)
return newnode
end
# Return a random node from the tree with parent
function randomNodeAndParent(tree::Node, parent::Union{Node, Nothing})::Tuple{Node, Union{Node, Nothing}}
if tree.degree == 0
return tree, parent
end
a = countNodes(tree)
b = 0
c = 0
if tree.degree >= 1
b = countNodes(tree.l)
end
if tree.degree == 2
c = countNodes(tree.r)
end
i = rand(1:1+b+c)
if i <= b
return randomNodeAndParent(tree.l, tree)
elseif i == b + 1
return tree, parent
end
return randomNodeAndParent(tree.r, tree)
end
# Select a random node, and replace it an the subtree
# with a variable or constant
function deleteRandomOp(tree::Node)::Node
node, parent = randomNodeAndParent(tree, nothing)
isroot = (parent == nothing)
if node.degree == 0
# Replace with new constant
newnode = randomConstantNode()
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
elseif node.degree == 1
# Join one of the children with the parent
if isroot
return node.l
elseif parent.l == node
parent.l = node.l
else
parent.r = node.l
end
else
# Join one of the children with the parent
if rand() < 0.5
if isroot
return node.l
elseif parent.l == node
parent.l = node.l
else
parent.r = node.l
end
else
if isroot
return node.r
elseif parent.l == node
parent.l = node.r
else
parent.r = node.r
end
end
end
return tree
end
# Simplify tree
function combineOperators(tree::Node)::Node
# (const (+*) const) already accounted for
# ((const + var) + const) => (const + var)
# ((const * var) * const) => (const * var)
# (anything commutative!)
if tree.degree == 2 && (tree.op == plus || tree.op == mult)
op = tree.op
if tree.l.constant || tree.r.constant
# Put the constant in r
if tree.l.constant
tmp = tree.r
tree.r = tree.l
tree.l = tmp
end
topconstant = tree.r.val
# Simplify down first
tree.l = combineOperators(tree.l)
below = tree.l
if below.degree == 2 && below.op == op
if below.l.constant
tree = below
tree.l.val = op(tree.l.val, topconstant)
elseif below.r.constant
tree = below
tree.r.val = op(tree.r.val, topconstant)
end
end
end
end
return tree
end
# Simplify tree
function simplifyTree(tree::Node)::Node
if tree.degree == 1
tree.l = simplifyTree(tree.l)
if tree.l.degree == 0 && tree.l.constant
return Node(tree.op(tree.l.val))
end
elseif tree.degree == 2
tree.r = simplifyTree(tree.r)
tree.l = simplifyTree(tree.l)
constantsBelow = (
tree.l.degree == 0 && tree.l.constant &&
tree.r.degree == 0 && tree.r.constant
)
if constantsBelow
return Node(tree.op(tree.l.val, tree.r.val))
end
end
return tree
end
# Go through one simulated annealing mutation cycle
# exp(-delta/T) defines probability of accepting a change
function iterate(
tree::Node, T::Float32;
annealing::Bool=true
)::Node
prev = tree
tree = copyNode(tree)
mutationChoice = rand()
weightAdjustmentMutateConstant = min(8, countConstants(tree))/8.0
cur_weights = copy(mutationWeights) .* 1.0
cur_weights[1] *= weightAdjustmentMutateConstant
cur_weights /= sum(cur_weights)
cweights = cumsum(cur_weights)
n = countNodes(tree)
if mutationChoice < cweights[1]
tree = mutateConstant(tree, T)
elseif mutationChoice < cweights[2]
tree = mutateOperator(tree)
elseif mutationChoice < cweights[3] && n < maxsize
tree = appendRandomOp(tree)
elseif mutationChoice < cweights[4] && n < maxsize
tree = insertRandomOp(tree)
elseif mutationChoice < cweights[5]
tree = deleteRandomOp(tree)
elseif mutationChoice < cweights[6]
tree = simplifyTree(tree) # Sometimes we simplify tree
tree = combineOperators(tree) # See if repeated constants at outer levels
return tree
elseif mutationChoice < cweights[7]
tree = genRandomTree(5) # Sometimes we simplify tree
else
return tree
end
if annealing
beforeLoss = scoreFunc(prev)
afterLoss = scoreFunc(tree)
delta = afterLoss - beforeLoss
probChange = exp(-delta/(T*alpha))
if isnan(afterLoss) || probChange < rand()
return copyNode(prev)
end
end
return tree
end
# Create a random equation by appending random operators
function genRandomTree(length::Integer)::Node
tree = Node(1.0f0)
for i=1:length
tree = appendRandomOp(tree)
end
return tree
end
# Define a member of population by equation, score, and age
mutable struct PopMember
tree::Node
score::Float32
birth::Int32
PopMember(t::Node) = new(t, scoreFunc(t), getTime())
PopMember(t::Node, score::Float32) = new(t, score, getTime())
end
# A list of members of the population, with easy constructors,
# which allow for random generation of new populations
mutable struct Population
members::Array{PopMember, 1}
n::Integer
Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1])
Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop)
Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop)
end
# Sample 10 random members of the population, and make a new one
function samplePop(pop::Population)::Population
idx = rand(1:pop.n, ns)
return Population(pop.members[idx])
end
# Sample the population, and get the best member from that sample
function bestOfSample(pop::Population)::PopMember
sample = samplePop(pop)
best_idx = argmin([sample.members[member].score for member=1:sample.n])
return sample.members[best_idx]
end
# Return best 10 examples
function bestSubPop(pop::Population; topn::Integer=10)::Population
best_idx = sortperm([pop.members[member].score for member=1:pop.n])
return Population(pop.members[best_idx[1:topn]])
end
# Mutate the best sampled member of the population
function iterateSample(
pop::Population, T::Float32;
annealing::Bool=true)::PopMember
allstar = bestOfSample(pop)
new = iterate(
allstar.tree, T,
annealing=annealing)
allstar.tree = new
allstar.score = scoreFunc(new)
allstar.birth = getTime()
return allstar
end
# Pass through the population several times, replacing the oldest
# with the fittest of a small subsample
function regEvolCycle(
pop::Population, T::Float32;
annealing::Bool=true)::Population
for i=1:round(Integer, pop.n/ns)
baby = iterateSample(pop, T, annealing=annealing)
#printTree(baby.tree)
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = baby
end
return pop
end
# Cycle through regularized evolution many times,
# printing the fittest equation every 10% through
function run(
pop::Population,
ncycles::Integer,
annealing::Bool=false;
verbosity::Integer=0
)::Population
allT = LinRange(1.0f0, 0.0f0, ncycles)
for iT in 1:size(allT)[1]
if annealing
pop = regEvolCycle(pop, allT[iT], annealing=true)
else
pop = regEvolCycle(pop, 1.0f0, annealing=true)
end
if verbosity > 0 && (iT % verbosity == 0)
bestPops = bestSubPop(pop)
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
bestCurScore = bestPops.members[bestCurScoreIdx].score
debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
end
end
return pop
end
# Get all the constants from a tree
function getConstants(tree::Node)::Array{Float32, 1}
if tree.degree == 0
if tree.constant
return [tree.val]
else
return Float32[]
end
elseif tree.degree == 1
return getConstants(tree.l)
else
both = [getConstants(tree.l), getConstants(tree.r)]
return [constant for subtree in both for constant in subtree]
end
end
# Set all the constants inside a tree
function setConstants(tree::Node, constants::Array{Float32, 1})
if tree.degree == 0
if tree.constant
tree.val = constants[1]
end
elseif tree.degree == 1
setConstants(tree.l, constants)
else
numberLeft = countConstants(tree.l)
setConstants(tree.l, constants)
setConstants(tree.r, constants[numberLeft+1:end])
end
end
# Proxy function for optimization
function optFunc(x::Array{Float32, 1}, tree::Node)::Float32
setConstants(tree, x)
return scoreFunc(tree)
end
# Use Nelder-Mead to optimize the constants in an equation
function optimizeConstants(member::PopMember)::PopMember
nconst = countConstants(member.tree)
if nconst == 0
return member
end
x0 = getConstants(member.tree)
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree)
if size(x0)[1] == 1
result = Optim.optimize(f, x0, Optim.Newton(), Optim.Options(iterations=20))
else
result = Optim.optimize(f, x0, Optim.NelderMead(), Optim.Options(iterations=100))
end
if Optim.converged(result)
setConstants(member.tree, result.minimizer)
member.score = convert(Float32, result.minimum)
member.birth = getTime()
else
setConstants(member.tree, x0)
end
return member
end
# List of the best members seen all time
mutable struct HallOfFame
members::Array{PopMember, 1}
exists::Array{Bool, 1} #Whether it has been set
# Arranged by complexity - store one at each.
HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize])
end
function fullRun(niterations::Integer;
npop::Integer=300,
annealing::Bool=true,
ncyclesperiteration::Integer=3000,
fractionReplaced::Float32=0.1f0,
verbosity::Integer=0,
topn::Integer=10
)
debug(verbosity, "Running with $nthreads threads")
# Generate random initial populations
allPops = [Population(npop, 3) for j=1:nthreads]
bestSubPops = [Population(1) for j=1:nthreads]
# Repeat this many evolutions; we collect and migrate the best
# each time.
hallOfFame = HallOfFame()
for k=1:niterations
# Spawn threads to run indepdent evolutions, then gather them
@inbounds Threads.@threads for i=1:nthreads
allPops[i] = run(allPops[i], ncyclesperiteration, annealing, verbosity=verbosity)
bestSubPops[i] = bestSubPop(allPops[i], topn=topn)
for j=1:bestSubPops[i].n
bestSubPops[i].members[j].tree = simplifyTree(bestSubPops[i].members[j].tree)
if shouldOptimizeConstants
bestSubPops[i].members[j] = optimizeConstants(bestSubPops[i].members[j])
end
end
end
# Get best 10 models from each evolution. Copy because we re-assign later.
# bestPops = deepcopy(Population([member for pop in allPops for member in bestSubPop(pop).members]))
bestPops = deepcopy(Population([member for pop in bestSubPops for member in pop.members]))
#Update hall of fame
for pop in allPops
for member in pop.members
size = countNodes(member.tree)
if member.score < hallOfFame.members[size].score
hallOfFame.members[size] = deepcopy(member)
hallOfFame.exists[size] = true
end
end
end
# Dominating pareto curve - must be better than all simpler equations
dominating = PopMember[]
open(hofFile, "w") do io
debug(verbosity, "Hall of Fame:")
debug(verbosity, "-----------------------------------------")
debug(verbosity, "Complexity \t MSE \t Equation")
println(io,"Complexity|MSE|Equation")
for size=1:actualMaxsize
if hallOfFame.exists[size]
member = hallOfFame.members[size]
curMSE = MSE(evalTreeArray(member.tree), y)
numberSmallerAndBetter = sum([curMSE > MSE(evalTreeArray(hallOfFame.members[i].tree), y) for i=1:(size-1)])
betterThanAllSmaller = (numberSmallerAndBetter == 0)
if betterThanAllSmaller
debug(verbosity, "$size \t $(curMSE) \t $(stringTree(member.tree))")
println(io, "$size|$(curMSE)|$(stringTree(member.tree))")
push!(dominating, member)
end
end
end
debug(verbosity, "")
end
# Migration
if migration
for j=1:nthreads
for k in rand(1:npop, round(Integer, npop*fractionReplaced))
# Copy in case one gets used twice
allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])])
end
end
end
# Hall of fame migration
if hofMigration && size(dominating)[1] > 0
for j=1:nthreads
for k in rand(1:npop, round(Integer, npop*fractionReplacedHof))
# Copy in case one gets used twice
allPops[j].members[k] = deepcopy(dominating[rand(1:size(dominating)[1])])
end
end
end
end
end
|