Spaces:
Running
Running
File size: 11,802 Bytes
cfca8a4 69c3f28 cfca8a4 9b9db9e a3a2513 cfca8a4 7b7f087 90049bc dcb0894 90049bc dcb0894 90049bc dcb0894 90049bc 35b5720 c7ce1c2 7b7f087 90049bc a1e142a 7b7f087 dcb0894 7b7f087 2e104cc 7b7f087 35b5720 4854265 7b7f087 a95ae71 7b7f087 cfca8a4 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 2e104cc 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 c27a9c8 a3a2513 333f394 4ff119b a3a2513 b66d8de a3a2513 a95ae71 a1e142a a95ae71 a3a2513 b66d8de cfca8a4 226786e 35b5720 226786e 2e104cc 226786e cfca8a4 a3a2513 226786e cfca8a4 e6db1f3 4ff119b cfca8a4 ea4213e 4ff119b cfca8a4 a3a2513 cfca8a4 35b5720 a3a2513 4854265 e6db1f3 a3a2513 4854265 e6db1f3 a3a2513 cfca8a4 69c3f28 ea4213e 7b7f087 ea4213e 7b7f087 c7ce1c2 7b7f087 35b5720 7b7f087 2e104cc ea4213e 3f4ce91 a3a2513 ea4213e cfca8a4 395823a cfca8a4 d8f5888 cfca8a4 f1cd245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
# Dumped from hyperparam optimization
default_alpha = 1.0#0.1
default_fractionReplaced = 0.10
default_fractionReplacedHof = 0.10
default_npop = 1000
default_weightAddNode = 1
default_weightInsertNode = 3
default_weightDeleteNode = 3
default_weightMutateConstant = 10
default_weightMutateOperator = 1
default_weightRandomize = 1
default_weightSimplify = 0.01
default_weightDoNothing = 1
default_result = 1
default_topn = 10
default_parsimony = 1e-4
default_perturbationFactor = 1.0
def eureqa(X=None, y=None, threads=4,
niterations=100,
ncyclesperiteration=300,
binary_operators=["plus", "mult"],
unary_operators=["cos", "exp", "sin"],
alpha=default_alpha,
annealing=True,
fractionReplaced=default_fractionReplaced,
fractionReplacedHof=default_fractionReplacedHof,
npop=int(default_npop),
parsimony=default_parsimony,
migration=True,
hofMigration=True,
shouldOptimizeConstants=True,
topn=int(default_topn),
weightAddNode=default_weightAddNode,
weightInsertNode=default_weightInsertNode,
weightDeleteNode=default_weightDeleteNode,
weightDoNothing=default_weightDoNothing,
weightMutateConstant=default_weightMutateConstant,
weightMutateOperator=default_weightMutateOperator,
weightRandomize=default_weightRandomize,
weightSimplify=default_weightSimplify,
perturbationFactor=default_perturbationFactor,
timeout=None,
equation_file='hall_of_fame.csv',
test='simple1',
verbosity=1e9,
maxsize=20,
):
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
Note: most default parameters have been tuned over several example
equations, but you should adjust `threads`, `niterations`,
`binary_operators`, `unary_operators` to your requirements.
:param X: np.ndarray, 2D array. Rows are examples, columns are features.
:param y: np.ndarray, 1D array. Rows are examples.
:param threads: int, Number of threads (=number of populations running).
You can have more threads than cores - it actually makes it more
efficient.
:param niterations: int, Number of iterations of the algorithm to run. The best
equations are printed, and migrate between populations, at the
end of each.
:param ncyclesperiteration: int, Number of total mutations to run, per 10
samples of the population, per iteration.
:param binary_operators: list, List of strings giving the binary operators
in Julia's Base, or in `operator.jl`.
:param unary_operators: list, Same but for operators taking a single `Float32`.
:param alpha: float, Initial temperature.
:param annealing: bool, Whether to use annealing. You should (and it is default).
:param fractionReplaced: float, How much of population to replace with migrating
equations from other populations.
:param fractionReplacedHof: float, How much of population to replace with migrating
equations from hall of fame.
:param npop: int, Number of individuals in each population
:param parsimony: float, Multiplicative factor for how much to punish complexity.
:param migration: bool, Whether to migrate.
:param hofMigration: bool, Whether to have the hall of fame migrate.
:param shouldOptimizeConstants: bool, Whether to numerically optimize
constants (Nelder-Mead/Newton) at the end of each iteration.
:param topn: int, How many top individuals migrate from each population.
:param weightAddNode: float, Relative likelihood for mutation to add a node
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
:param weightMutateConstant: float, Relative likelihood for mutation to change
the constant slightly in a random direction.
:param weightMutateOperator: float, Relative likelihood for mutation to swap
an operator.
:param weightRandomize: float, Relative likelihood for mutation to completely
delete and then randomly generate the equation
:param weightSimplify: float, Relative likelihood for mutation to simplify
constant parts by evaluation
:param timeout: float, Time in seconds to timeout search
:param equation_file: str, Where to save the files (.csv separated by |)
:param test: str, What test to run, if X,y not passed.
:param maxsize: int, Max size of an equation.
:returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
(as strings).
"""
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'
if isinstance(binary_operators, str): binary_operators = [binary_operators]
if isinstance(unary_operators, str): unary_operators = [unary_operators]
if X is None:
if test == 'simple1':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
elif test == 'simple2':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
elif test == 'simple3':
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
elif test == 'simple4':
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
elif test == 'simple5':
eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"
X = np.random.randn(100, 5)*3
y = eval(eval_str)
print("Running on", eval_str)
def_hyperparams = f"""include("operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nthreads = {threads:d}
const perturbationFactor = {perturbationFactor:f}f0
const annealing = {"true" if annealing else "false"}
const mutationWeights = [
{weightMutateConstant:f},
{weightMutateOperator:f},
{weightAddNode:f},
{weightInsertNode:f},
{weightDeleteNode:f},
{weightSimplify:f},
{weightRandomize:f},
{weightDoNothing:f}
]
"""
assert len(X.shape) == 2
assert len(y.shape) == 1
X_str = str(X.tolist()).replace('],', '];').replace(',', '')
y_str = str(y.tolist())
def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})""""
"""
starting_path = f'cd {pathlib.Path().absolute()}'
code_path = f'cd {pathlib.Path(__file__).parent.absolute()}' #Move to filepath of code
os.system(code_path)
with open(f'.hyperparams_{rand_string}.jl', 'w') as f:
print(def_hyperparams, file=f)
with open(f'.dataset_{rand_string}.jl', 'w') as f:
print(def_datasets, file=f)
command = [
'julia -O3',
f'--threads {threads}',
'-e',
f'\'include(".hyperparams_{rand_string}.jl"); include(".dataset_{rand_string}.jl"); include("eureqa.jl"); fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})\'',
]
if timeout is not None:
command = [f'timeout {timeout}'] + command
cur_cmd = ' '.join(command)
print("Running on", cur_cmd)
os.system(cur_cmd)
try:
output = pd.read_csv(equation_file, sep="|")
except FileNotFoundError:
print("Couldn't find equation file!")
output = pd.DataFrame()
os.system(starting_path)
return output
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--threads", type=int, default=4, help="Number of threads")
parser.add_argument("--parsimony", type=float, default=default_parsimony, help="How much to punish complexity")
parser.add_argument("--alpha", type=float, default=default_alpha, help="Scaling of temperature")
parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation")
parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods")
parser.add_argument("--npop", type=int, default=int(default_npop), help="Number of members per population")
parser.add_argument("--ncyclesperiteration", type=int, default=10000, help="Number of evolutionary cycles per migration")
parser.add_argument("--topn", type=int, default=int(default_topn), help="How many best species to distribute from each population")
parser.add_argument("--perturbationFactor", type=float, default=default_perturbationFactor)
parser.add_argument("--fractionReplacedHof", type=float, default=default_fractionReplacedHof, help="Fraction of population to replace with hall of fame")
parser.add_argument("--fractionReplaced", type=float, default=default_fractionReplaced, help="Fraction of population to replace with best from other populations")
parser.add_argument("--weightAddNode", type=float, default=default_weightAddNode)
parser.add_argument("--weightInsertNode", type=float, default=default_weightInsertNode)
parser.add_argument("--weightDeleteNode", type=float, default=default_weightDeleteNode)
parser.add_argument("--weightMutateConstant", type=float, default=default_weightMutateConstant)
parser.add_argument("--weightMutateOperator", type=float, default=default_weightMutateOperator)
parser.add_argument("--weightRandomize", type=float, default=default_weightRandomize)
parser.add_argument("--weightSimplify", type=float, default=default_weightSimplify)
parser.add_argument("--weightDoNothing", type=float, default=default_weightDoNothing)
parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate")
parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration")
parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)")
parser.add_argument("--annealing", type=bool, default=True, help="Whether to use simulated annealing")
parser.add_argument("--equation_file", type=str, default='hall_of_fame.csv', help="File to dump best equations to")
parser.add_argument("--test", type=str, default='simple1', help="Which test to run")
parser.add_argument(
"--binary-operators", type=str, nargs="+", default=["plus", "mult"],
help="Binary operators. Make sure they are defined in operators.jl")
parser.add_argument(
"--unary-operators", type=str, nargs="+", default=["exp", "sin", "cos"],
help="Unary operators. Make sure they are defined in operators.jl")
args = vars(parser.parse_args()) #dict
eureqa(**args)
|