PySR / docs /examples.md
MilesCranmer's picture
Update PySR examples with PySRRegressor
cda5da4
|
raw
history blame
2.19 kB

Examples

Preamble

import numpy as np
from pysr import *

We'll also set up some default options that will make these simple searches go faster (but are less optimal for more complex searches).

kwargs = dict(populations=5, niterations=5, annealing=True)

1. Simple search

Here's a simple example where we find the expression 2 cos(x3) + x0^2 - 2.

X = 2 * np.random.randn(100, 5)
y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
model = PySRRegressor(binary_operators=["+", "-", "*", "/"], **kwargs)
model.fit(X, y)
print(model)

2. Custom operator

Here, we define a custom operator and use it to find an expression:

X = 2 * np.random.randn(100, 5)
y = 1 / X[:, 0]
model = PySRRegressor(
    binary_operators=["plus", "mult"],
    unary_operators=["inv(x) = 1/x"],
    **kwargs
)
model.fit(X, y)
print(model)

3. Multiple outputs

Here, we do the same thing, but with multiple expressions at once, each requiring a different feature.

X = 2 * np.random.randn(100, 5)
y = 1 / X[:, [0, 1, 2]]
model = PySRRegressor(
    binary_operators=["plus", "mult"],
    unary_operators=["inv(x) = 1/x"],
    **kwargs
)
model.fit(X, y)

4. Plotting an expression

Here, let's use the same equations, but get a format we can actually use and test. We can add this option after a search via the set_params function:

model.set_params(extra_sympy_mappings={"inv": lambda x: 1/x})
model.sympy()

If you look at the lists of expressions before and after, you will see that the sympy format now has replaced inv with 1/. We can again look at the equation chosen:

print(model)

For now, let's consider the expressions for output 0. We can see the LaTeX version of this with:

model.latex()[0]

or output 1 with model.latex()[1]. and the sympy version with:

model.sympy()[0]

Let's plot the prediction against the truth:

from matplotlib import pyplot as plt
plt.scatter(y[:, 0], model(X)[:, 0])
plt.xlabel('Truth')
plt.ylabel('Prediction')
plt.show()

Which gives us: