Spaces:
Sleeping
Sleeping
File size: 2,707 Bytes
8f835ef 90f787c 8f835ef e2275e6 cacb7f3 47f7c8e 4056dee 6128278 4056dee 8f835ef cacb7f3 8f835ef 8009558 9dff4e4 8009558 fd53b44 8009558 6d50512 8009558 8f835ef ec6ee59 8009558 02dae87 8009558 02dae87 cacb7f3 8f835ef 1df8064 8f835ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import time
import gradio as gr
import os
import asyncio
from pymongo import MongoClient
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_openai import OpenAIEmbeddings
from langchain_community.llms import OpenAI
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()
import json
## Connect to MongoDB Atlas local cluster
MONGODB_ATLAS_CLUSTER_URI = os.getenv('MONGODB_ATLAS_CLUSTER_URI')
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
db_name = 'sample_mflix'
collection_name = 'embedded_movies'
collection = client[db_name][collection_name]
try:
vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
llm = ChatOpenAI(temperature=0)
prompt = ChatPromptTemplate.from_messages([
("system", "You are a movie recommendation engine which post a concise and short summary on relevant movies."),
("user", "List of movies: {input}")
])
chain = prompt | llm | output_parser
except:
#If open ai key is wrong
print ('Open AI key is wrong')
vector_store = None
def get_movies(message, history):
try:
movies = vector_store.similarity_search(message, 3)
return_text = ''
for movie in movies:
return_text = return_text + 'Title : ' + movie.metadata['title'] + '\n------------\n' + 'Plot: ' + movie.page_content + '\n\n'
print_llm_text = chain.invoke({"input": return_text})
for i in range(len(print_llm_text)):
time.sleep(0.05)
yield "Found: " + "\n\n" + print_llm_text[: i+1]
except Exception as e:
error_message = traceback.format_exc()
yield "An error occurred: \n" + error_message
yield "Please clone the repo and add your open ai key as well as your MongoDB Atlas UR in the Secret Section of you Space\n OPENAI_API_KEY (your Open AI key) and MONGODB_ATLAS_CLUSTER_URI (0.0.0.0/0 whitelisted instance with Vector index created) \n\n For more information : https://mongodb.com/products/platform/atlas-vector-search"
demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search",description="This small chat uses a similarity search to find relevant movies, it uses an MongoDB Atlase Vector Search read more here: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial",submit_btn="Search").queue()
if __name__ == "__main__":
demo.launch() |