File size: 4,347 Bytes
58cea02
 
 
 
 
 
 
 
 
 
9c7e08b
58cea02
 
 
 
 
 
 
 
d04558f
58cea02
 
 
 
 
 
1689df1
5db8a23
 
 
 
 
 
 
9c7e08b
5db8a23
 
 
 
 
58cea02
1689df1
58cea02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356c7d4
 
3909ec7
356c7d4
 
 
 
58cea02
356c7d4
29e4551
dc1c8da
 
58cea02
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
import random

## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_contest_file import load_contest_file
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches

tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
    if st.button('Clear data', key='reset1'):
        st.session_state.clear()
    # Add file uploaders to your app
    col1, col2, col3 = st.columns(3)
    
    with col1:
        st.subheader("Contest File")
        st.info("Go ahead and upload a Contest file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
        Contest_file = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
        if 'Contest' in st.session_state:
            del st.session_state['Contest']

        if Contest_file:
            st.session_state['Contest'], st.session_state['ownership_dict'], st.session_state['entry_list'] = load_contest_file(Contest_file)
            st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
            st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
            if st.session_state['Contest'] is not None:
                st.success('Contest file loaded successfully!')
                st.dataframe(st.session_state['Contest'].head(10))

    with col2:
        st.subheader("Projections File")
        st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
        
        # Create two columns for the uploader and template button
        upload_col, template_col = st.columns([3, 1])
        
        with upload_col:
            projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'projections_df' in st.session_state:
                del st.session_state['projections_df']
        
        with template_col:
            # Create empty DataFrame with required columns
            template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
            # Add download button for template
            st.download_button(
                label="Template",
                data=template_df.to_csv(index=False),
                file_name="projections_template.csv",
                mime="text/csv"
            )
            
        if projections_file:
            export_projections, projections = load_file(projections_file)
            if projections is not None:
                st.success('Projections file loaded successfully!')
                st.dataframe(projections.head(10))

    if Contest_file and projections_file:
        if st.session_state['Contest'] is not None and projections is not None:
            st.subheader("Name Matching functions")
            # Initialize projections_df in session state if it doesn't exist
            if 'projections_df' not in st.session_state:
                st.session_state['projections_df'] = projections.copy()
                st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
            
            # Update projections_df with any new matches
            st.session_state['contest_df'], st.session_state['projections_df'] = find_name_mismatches(st.session_state['Contest'], st.session_state['projections_df'])
    st.dataframe(st.session_state['contest_df'].head(100))
    st.dataframe(st.session_state['projections_df'].head(100))

with tab2:
    if st.button('Clear data', key='reset3'):
        st.session_state.clear()