File size: 17,787 Bytes
a35b524
 
 
 
 
c7e2afa
a35b524
5dc36a5
 
 
 
 
 
8c72f5c
5dc36a5
 
 
 
8c72f5c
 
f978f29
5dc36a5
 
 
 
 
 
 
8c72f5c
5dc36a5
 
606905f
5dc36a5
 
 
 
8c72f5c
606905f
5dc36a5
bd90e32
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd90e32
8b35df7
 
bd90e32
 
 
 
 
8b35df7
 
bd90e32
 
 
 
 
 
 
 
 
8b35df7
bd90e32
 
 
 
 
 
8b35df7
bd90e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b524
 
 
 
 
 
 
 
 
58073a4
 
 
 
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dc36a5
50fa4f0
a35b524
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import streamlit as st
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
import math

def calculate_weighted_ownership(row_ownerships):
    """
    Calculate weighted ownership based on the formula:
    (AVERAGE of (each value's average with overall average)) * count - (max - min)
    
    Args:
        row_ownerships: Series containing ownership values in percentage form (e.g., 24.2213 for 24.2213%)
        
    Returns:
        float: Calculated weighted ownership value
    """
    # Drop NaN values and convert percentages to decimals
    row_ownerships = row_ownerships.dropna() / 100
    
    # Get the mean of all ownership values
    row_mean = row_ownerships.mean()
    
    # Calculate average of each value with the overall mean
    value_means = [(val + row_mean) / 2 for val in row_ownerships]
    
    # Take average of all those means
    avg_of_means = sum(value_means) / len(row_ownerships)
    
    # Multiply by count of values
    weighted = avg_of_means * (len(row_ownerships) * 1)
    
    # Subtract (max - min)
    weighted = weighted - (row_ownerships.max() - row_ownerships.min())
    
    # Convert back to percentage form to match input format
    return weighted * 10000

def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var):
    if strength_var == 'Weak':
        dupes_multiplier = .75
        percentile_multiplier = .90
    elif strength_var == 'Average':
        dupes_multiplier = 1.00
        percentile_multiplier = 1.00
    elif strength_var == 'Sharp':
        dupes_multiplier = 1.25
        percentile_multiplier = 1.10
    max_ownership = max(maps_dict['own_map'].values()) / 100
    average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100
    if site_var == 'Fanduel':
        if type_var == 'Showdown':
            dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
            own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            flex_ownerships = pd.concat([
                portfolio.iloc[:,1].map(maps_dict['own_map']),
                portfolio.iloc[:,2].map(maps_dict['own_map']),
                portfolio.iloc[:,3].map(maps_dict['own_map']),
                portfolio.iloc[:,4].map(maps_dict['own_map'])
            ])
            flex_rank = flex_ownerships.rank(pct=True)
            
            # Assign ranks back to individual columns using the same rank scale
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
            portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
            
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )
        if type_var == 'Classic':
            num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
            dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
            own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            for i in range(1, num_players + 1):
                portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )

    elif site_var == 'Draftkings':
        if type_var == 'Showdown':
            dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
            own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            flex_ownerships = pd.concat([
                portfolio.iloc[:,1].map(maps_dict['own_map']),
                portfolio.iloc[:,2].map(maps_dict['own_map']),
                portfolio.iloc[:,3].map(maps_dict['own_map']),
                portfolio.iloc[:,4].map(maps_dict['own_map']),
                portfolio.iloc[:,5].map(maps_dict['own_map'])
            ])
            flex_rank = flex_ownerships.rank(pct=True)
            
            # Assign ranks back to individual columns using the same rank scale
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
            portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
            portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']) / 100

            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier

            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )
        if type_var == 'Classic':
            if sport_var == 'CS2':
                dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
                own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
                calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
                flex_ownerships = pd.concat([
                    portfolio.iloc[:,1].map(maps_dict['own_map']),
                    portfolio.iloc[:,2].map(maps_dict['own_map']),
                    portfolio.iloc[:,3].map(maps_dict['own_map']),
                    portfolio.iloc[:,4].map(maps_dict['own_map']),
                    portfolio.iloc[:,5].map(maps_dict['own_map'])
                ])
                flex_rank = flex_ownerships.rank(pct=True)
                
                # Assign ranks back to individual columns using the same rank scale
                portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
                portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

                portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
                portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
                portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
                portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
                portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
                portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']) / 100

                portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
                portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
                portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
                portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
                
                # Calculate dupes formula
                portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
                portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier

                # Round and handle negative values
                portfolio['Dupes'] = np.where(
                    np.round(portfolio['dupes_calc'], 0) <= 0,
                    0, 
                    np.round(portfolio['dupes_calc'], 0) - 1
                )
            elif sport_var != 'CS2':
                num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
                dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
                own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
                calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
                for i in range(1, num_players + 1):
                    portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                    portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
                
                portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
                portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
                portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
                portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
                
                portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
                portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
                # Round and handle negative values
                portfolio['Dupes'] = np.where(
                    np.round(portfolio['dupes_calc'], 0) <= 0,
                    0, 
                    np.round(portfolio['dupes_calc'], 0) - 1
                )

    portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
    portfolio['own_ratio'] = np.where(
        portfolio[own_columns].isin([max_ownership]).any(axis=1),
        portfolio['own_sum'] / portfolio['own_average'],
        (portfolio['own_sum'] - max_ownership) / portfolio['own_average']
    )
    percentile_cut_scalar = portfolio['median'].max()  # Get scalar value
    if type_var == 'Classic':
        if sport_var == 'CS2':
            own_ratio_nerf = 2
        elif sport_var != 'CS2':
            own_ratio_nerf = 1.5
    elif type_var == 'Showdown':
        own_ratio_nerf = 1.5
    portfolio['Finish_percentile'] = portfolio.apply(
        lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2) < .0005 
        else (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2), 
        axis=1
    )
    
    portfolio['Ref_Proj'] = portfolio['median'].max()
    portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10
    portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10
    portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2
    portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10
    max_allowed_win = (1 / Contest_Size) * 5
    portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win
    
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000))
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier
    portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile'])
    
    portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
    portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
    portfolio['Lineup Edge'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))
    portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
    portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean()
    portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership, axis=1)
    portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
    portfolio = portfolio.drop(columns=dup_count_columns)
    portfolio = portfolio.drop(columns=own_columns)
    portfolio = portfolio.drop(columns=calc_columns)

    return portfolio