File size: 49,438 Bytes
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a0284
9157685
 
 
 
 
 
 
c2f648d
 
 
9157685
 
 
 
 
 
 
b5d9378
9157685
 
 
 
 
 
37a0284
9157685
 
55e2fd8
9157685
 
 
 
c2f648d
 
 
85bca50
 
 
 
 
 
9157685
b5d9378
85bca50
 
 
 
 
 
 
 
 
55e2fd8
85bca50
 
 
 
 
 
 
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
37a0284
9157685
 
 
 
 
 
 
85bca50
c2f648d
 
9157685
 
 
 
 
 
 
b5d9378
9157685
 
 
 
 
 
37a0284
9157685
 
55e2fd8
9157685
 
 
 
85bca50
 
 
 
 
 
 
 
 
 
b5d9378
85bca50
 
 
 
 
 
 
 
 
55e2fd8
85bca50
 
 
 
 
c2f648d
 
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bccd59
b14eb85
9157685
 
65506a6
9157685
3bccd59
b14eb85
9157685
 
65506a6
9157685
3bccd59
b14eb85
9157685
 
65506a6
9157685
3bccd59
b14eb85
9157685
 
65506a6
9157685
85bca50
 
 
 
 
 
 
 
 
 
 
 
9157685
 
85bca50
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8338949
9157685
 
 
 
 
 
8338949
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8338949
 
9157685
 
 
8338949
 
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85bca50
9157685
 
 
 
 
 
 
 
 
 
 
 
 
85bca50
9157685
 
 
85bca50
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85bca50
 
 
 
 
 
 
 
 
 
 
9157685
 
 
 
 
 
85bca50
 
 
 
 
 
 
 
 
 
 
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0973679
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14eb85
9157685
 
 
85bca50
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5611fc5
 
 
 
 
 
9157685
 
 
 
 
 
 
 
 
 
 
 
85bca50
 
 
 
 
 
 
 
9157685
 
85bca50
9157685
 
 
 
 
 
 
 
 
 
85bca50
 
 
 
 
 
 
 
9157685
5611fc5
 
 
 
 
 
9157685
 
 
 
 
 
 
 
 
 
 
 
 
 
5611fc5
 
 
 
 
 
9157685
 
 
 
 
 
 
 
85bca50
 
 
 
 
 
 
 
 
 
 
 
 
5611fc5
 
9157685
 
 
 
 
5611fc5
9157685
 
 
 
 
 
 
 
85bca50
 
 
 
 
 
 
 
 
 
 
 
9157685
5611fc5
9157685
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo

@st.cache_resource
def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["MLB_Database"]

        return db
    
db = init_conn()

percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

st.markdown("""
<style>
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
        padding: 4px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #FFD700;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }
    .stTabs [aria-selected="true"] {
        background-color: #DAA520;
        color: white;
    }
    .stTabs [data-baseweb="tab"]:hover {
        background-color: #DAA520;
        cursor: pointer;
    }
</style>""", unsafe_allow_html=True)

@st.cache_data(ttl = 60)
def init_DK_seed_frames(sharp_split):  
        
        collection = db['DK_MLB_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))

        # Get the valid players from the Range of Outcomes collection
        collection = db["Player_Range_Of_Outcomes"]
        cursor = collection.find({"Site": "Draftkings", "Slate": "main_slate"})
        valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
    
        collection = db["DK_MLB_seed_frame"] 
        cursor = collection.find().limit(sharp_split)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
        # Map names
        raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_DK_secondary_seed_frames(sharp_split):  
        
        collection = db['DK_MLB_Secondary_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))

        # Get the valid players from the Range of Outcomes collection
        collection = db["Player_Range_Of_Outcomes"]
        cursor = collection.find({"Site": "Draftkings", "Slate": "secondary_slate"})
        valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
    
        collection = db["DK_MLB_Secondary_seed_frame"] 
        cursor = collection.find().limit(sharp_split)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
        # Map names
        raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_DK_auxiliary_seed_frames(sharp_split):  
        
        collection = db['DK_MLB_Turbo_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))

        # Get the valid players from the Range of Outcomes collection
        collection = db["Player_Range_Of_Outcomes"]
        cursor = collection.find({"Site": "Draftkings", "Slate": "turbo_slate"})
        valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
    
        collection = db["DK_MLB_Turbo_seed_frame"] 
        cursor = collection.find().limit(sharp_split)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
        # Map names
        raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_FD_seed_frames(sharp_split):  
    
        collection = db['FD_MLB_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))

        # Get the valid players from the Range of Outcomes collection
        collection = db["Player_Range_Of_Outcomes"]
        cursor = collection.find({"Site": "Fanduel", "Slate": "main_slate"})
        valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
    
        collection = db["FD_MLB_seed_frame"] 
        cursor = collection.find().limit(sharp_split)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
        # Map names
        raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        FD_seed = raw_display.to_numpy()

        return FD_seed

@st.cache_data(ttl = 60)
def init_FD_secondary_seed_frames(sharp_split):  
    
        collection = db['FD_MLB_Secondary_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))

        # Get the valid players from the Range of Outcomes collection
        collection = db["Player_Range_Of_Outcomes"]
        cursor = collection.find({"Site": "Fanduel", "Slate": "secondary_slate"})
        valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
    
        collection = db["FD_MLB_Secondary_seed_frame"] 
        cursor = collection.find().limit(sharp_split)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
        # Map names
        raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        FD_seed = raw_display.to_numpy()

        return FD_seed

@st.cache_data(ttl = 60)
def init_FD_auxiliary_seed_frames(sharp_split):  
    
        collection = db['FD_MLB_Turbo_name_map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))

        # Get the valid players from the Range of Outcomes collection
        collection = db["Player_Range_Of_Outcomes"]
        cursor = collection.find({"Site": "Fanduel", "Slate": "turbo_slate"})
        valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
    
        collection = db["FD_MLB_Turbo_seed_frame"] 
        cursor = collection.find().limit(sharp_split)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
        # Map names
        raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        FD_seed = raw_display.to_numpy()

        return FD_seed

@st.cache_data(ttl = 599)
def init_baselines():
    collection = db["Player_Range_Of_Outcomes"] 
    cursor = collection.find()

    load_display = pd.DataFrame(list(cursor))

    load_display.replace('', np.nan, inplace=True)
    load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True)
    load_display = load_display[load_display['Median'] > 0]

    dk_roo_raw = load_display[load_display['Site'] == 'Draftkings']
    dk_roo_raw = dk_roo_raw[dk_roo_raw['Slate'] == 'main_slate']
    dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 3
    dk_raw = dk_roo_raw.dropna(subset=['Median'])
    dk_raw = dk_raw.rename(columns={'Own%': 'Own'})

    fd_roo_raw = load_display[load_display['Site'] == 'Fanduel']
    fd_roo_raw = fd_roo_raw[fd_roo_raw['Slate'] == 'main_slate']
    fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 3
    fd_raw = fd_roo_raw.dropna(subset=['Median'])
    fd_raw = fd_raw.rename(columns={'Own%': 'Own'})

    dk_secondary_roo_raw = load_display[load_display['Site'] == 'Draftkings']
    dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['Slate'] == 'secondary_slate']
    dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 3
    dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median'])
    dk_secondary = dk_secondary.rename(columns={'Own%': 'Own'})

    fd_secondary_roo_raw = load_display[load_display['Site'] == 'Fanduel']
    fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['Slate'] == 'secondary_slate']
    fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 3
    fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
    fd_secondary = fd_secondary.rename(columns={'Own%': 'Own'})

    dk_auxiliary_roo_raw = load_display[load_display['Site'] == 'Draftkings']
    dk_auxiliary_roo_raw = dk_auxiliary_roo_raw[dk_auxiliary_roo_raw['Slate'] == 'turbo_slate']
    dk_auxiliary_roo_raw['STDev'] = dk_auxiliary_roo_raw['Median'] / 3
    dk_auxiliary = dk_auxiliary_roo_raw.dropna(subset=['Median'])
    dk_auxiliary = dk_auxiliary.rename(columns={'Own%': 'Own'})

    fd_auxiliary_roo_raw = load_display[load_display['Site'] == 'Fanduel']
    fd_auxiliary_roo_raw = fd_auxiliary_roo_raw[fd_auxiliary_roo_raw['Slate'] == 'turbo_slate']
    fd_auxiliary_roo_raw['STDev'] = fd_auxiliary_roo_raw['Median'] / 3
    fd_auxiliary = fd_auxiliary_roo_raw.dropna(subset=['Median'])
    fd_auxiliary = fd_auxiliary.rename(columns={'Own%': 'Own'})

    teams_playing_count = len(dk_raw.Team.unique())

    return dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count

@st.cache_data
def validate_lineup_players(df, valid_players, player_columns):
    """
    Validates that all players in specified columns exist in valid_players set
    
    Args:
        df: DataFrame containing lineups
        valid_players: Set of valid player names
        player_columns: List of columns containing player names
    
    Returns:
        DataFrame with only valid lineups
    """
    valid_rows = df[player_columns].apply(lambda x: x.isin(valid_players)).all(axis=1)
    return df[valid_rows]

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

@st.cache_data
def calculate_DK_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :10], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array 

@st.cache_data
def calculate_FD_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :9], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array

@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count, site):
    SimVar = 1
    Sim_Winners = []
    fp_array = seed_frame.copy()
    # Pre-vectorize functions
    vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
    vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
    
    st.write('Simulating contest on frames')
    
    while SimVar <= Sim_size:
        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]

        if site == 'Draftkings':    
            # Calculate stack multipliers first
            stack_multiplier = np.ones(fp_random.shape[0])  # Start with no bonus
            stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 13] == 4, 0.025 * (teams_playing_count - 8), 0))
            stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 13] >= 5, 0.025 * (teams_playing_count - 12), 0))
        elif site == 'Fanduel':
             # Calculate stack multipliers first
            stack_multiplier = np.ones(fp_random.shape[0])  # Start with no bonus
            stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 12] == 4, 0.025 * (teams_playing_count - 8), 0))
            stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 12] >= 5, 0.025 * (teams_playing_count - 12), 0))
        
        # Apply multipliers to both loc and scale in the normal distribution
        base_projections = np.sum(np.random.normal(
            loc=vec_projection_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis],
            scale=vec_stdev_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis]),
        axis=1)
        
        final_projections = base_projections

        sample_arrays = np.c_[fp_random, final_projections]
        if site == 'Draftkings':
            final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
        elif site == 'Fanduel':
            final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
        best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
        Sim_Winners.append(best_lineup)
        SimVar += 1
        
    return Sim_Winners

dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))

tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
            
with tab1:
    with st.expander("Info and Filters"):
        if st.button("Load/Reset Data", key='reset2'):
              st.cache_data.clear()
              for key in st.session_state.keys():
                  del st.session_state[key]
              DK_seed = init_DK_seed_frames(10000)
              FD_seed = init_FD_seed_frames(10000)
              dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count = init_baselines()
              dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
              fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))

        sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'), key='sim_slate_var1')
        sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
            
        contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
        if contest_var1 == 'Small':
            Contest_Size = 1000
        elif contest_var1 == 'Medium':
            Contest_Size = 5000
        elif contest_var1 == 'Large':
            Contest_Size = 10000
        elif contest_var1 == 'Custom':
            Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
        strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
        if strength_var1 == 'Not Very':
            sharp_split = 500000
        elif strength_var1 == 'Below Average':
            sharp_split = 250000
        elif strength_var1 == 'Average':
            sharp_split = 100000
        elif strength_var1 == 'Above Average':
            sharp_split = 50000
        elif strength_var1 == 'Very':
            sharp_split = 10000

    if st.button("Run Contest Sim"):
        if 'working_seed' in st.session_state:
            st.session_state.maps_dict = {
                    'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
                    'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
                    'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
                    'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
                    'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
                    'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
                    }
            Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count, sim_site_var1)
            Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
            
            #st.table(Sim_Winner_Frame)
                        
            # Initial setup
            Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
            Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
            Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
            Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
            
            # Type Casting
            type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
            Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
            
            # Sorting
            st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
            st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
            
            # Data Copying
            st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
            for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
                st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
            st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
            
            # Data Copying
            st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
            
        else:
            if sim_site_var1 == 'Draftkings':
                if sim_slate_var1 == 'Main Slate':
                    st.session_state.working_seed = init_DK_seed_frames(sharp_split)
                    dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
                    raw_baselines = dk_raw
                    column_names = dk_columns
                elif sim_slate_var1 == 'Secondary Slate':
                    st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
                    dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
                    raw_baselines = dk_secondary
                    column_names = dk_columns
                elif sim_slate_var1 == 'Auxiliary Slate':
                    st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split)
                    dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
                    raw_baselines = dk_auxiliary
                    column_names = dk_columns
                    
            elif sim_site_var1 == 'Fanduel':
                if sim_slate_var1 == 'Main Slate':
                    st.session_state.working_seed = init_FD_seed_frames(sharp_split)
                    fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
                    raw_baselines = fd_raw
                    column_names = fd_columns
                elif sim_slate_var1 == 'Secondary Slate':
                    st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
                    fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
                    raw_baselines = fd_secondary
                    column_names = fd_columns
                elif sim_slate_var1 == 'Auxiliary Slate':
                    st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split)
                    fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
                    raw_baselines = fd_auxiliary
                    column_names = fd_columns
                    

            st.session_state.maps_dict = {
                    'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
                    'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
                    'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
                    'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
                    'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
                    'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
                    }
            Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count, sim_site_var1)
            Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
            
            #st.table(Sim_Winner_Frame)
                        
            # Initial setup
            Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
            Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
            Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
            Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
            
            # Type Casting
            type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
            Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
            
            # Sorting
            st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
            st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
            
            # Data Copying
            st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
            for col in st.session_state.Sim_Winner_Export.iloc[:, 0:10].columns:
                st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
            st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
            
            # Data Copying
            st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
            st.session_state.freq_copy = st.session_state.Sim_Winner_Display
            
        if sim_site_var1 == 'Draftkings':
            freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:10].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        elif sim_site_var1 == 'Fanduel':
            freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        freq_working['Freq'] = freq_working['Freq'].astype(int)
        freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
        freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
        freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
        freq_working['Exposure'] = freq_working['Freq']/(1000)
        freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
        freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
        st.session_state.player_freq = freq_working.copy()

        if sim_site_var1 == 'Draftkings':
            sp_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        elif sim_site_var1 == 'Fanduel':
            sp_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        sp_working['Freq'] = sp_working['Freq'].astype(int)
        sp_working['Position'] = sp_working['Player'].map(st.session_state.maps_dict['Pos_map'])
        sp_working['Salary'] = sp_working['Player'].map(st.session_state.maps_dict['Salary_map'])
        sp_working['Proj Own'] = sp_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
        sp_working['Exposure'] = sp_working['Freq']/(1000)
        sp_working['Edge'] = sp_working['Exposure'] - sp_working['Proj Own']
        sp_working['Team'] = sp_working['Player'].map(st.session_state.maps_dict['Team_map'])
        st.session_state.sp_freq = sp_working.copy()

        if sim_site_var1 == 'Draftkings':
            team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,12:13].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        elif sim_site_var1 == 'Fanduel':
            team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        team_working['Freq'] = team_working['Freq'].astype(int)
        team_working['Exposure'] = team_working['Freq']/(1000)
        st.session_state.team_freq = team_working.copy()

        if sim_site_var1 == 'Draftkings':
            stack_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,13:14].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        elif sim_site_var1 == 'Fanduel':
            stack_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,12:13].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        stack_working['Freq'] = stack_working['Freq'].astype(int)
        stack_working['Exposure'] = stack_working['Freq']/(1000)
        st.session_state.stack_freq = stack_working.copy()
            
        with st.container():
            if st.button("Reset Sim", key='reset_sim'):
                for key in st.session_state.keys():
                    del st.session_state[key]
            if 'player_freq' in st.session_state: 
                player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
                if player_split_var2 == 'Specific Players':
                          find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
                elif player_split_var2 == 'Full Players':
                          find_var2 = st.session_state.player_freq.Player.values.tolist()
    
                if player_split_var2 == 'Specific Players':
                          st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
                if player_split_var2 == 'Full Players':
                          st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
            if 'Sim_Winner_Display' in st.session_state:
                st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
            if 'Sim_Winner_Export' in st.session_state:
                st.download_button(
                     
                    label="Export Full Frame",
                    data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
                    file_name='MLB_consim_export.csv',
                    mime='text/csv',
                )  
        tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Stack Type Statistics'])
        
        with tab1:
            if 'Sim_Winner_Display' in st.session_state:
                # Create a new dataframe with summary statistics
                summary_df = pd.DataFrame({
                    'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                    'Salary': [
                        st.session_state.Sim_Winner_Display['salary'].min(),
                        st.session_state.Sim_Winner_Display['salary'].mean(),
                        st.session_state.Sim_Winner_Display['salary'].max(),
                        st.session_state.Sim_Winner_Display['salary'].std()
                    ],
                    'Proj': [
                        st.session_state.Sim_Winner_Display['proj'].min(),
                        st.session_state.Sim_Winner_Display['proj'].mean(),
                        st.session_state.Sim_Winner_Display['proj'].max(),
                        st.session_state.Sim_Winner_Display['proj'].std()
                    ],
                    'Own': [
                        st.session_state.Sim_Winner_Display['Own'].min(),
                        st.session_state.Sim_Winner_Display['Own'].mean(),
                        st.session_state.Sim_Winner_Display['Own'].max(),
                        st.session_state.Sim_Winner_Display['Own'].std()
                    ],
                    'Fantasy': [
                        st.session_state.Sim_Winner_Display['Fantasy'].min(),
                        st.session_state.Sim_Winner_Display['Fantasy'].mean(),
                        st.session_state.Sim_Winner_Display['Fantasy'].max(),
                        st.session_state.Sim_Winner_Display['Fantasy'].std()
                    ],
                    'GPP_Proj': [
                        st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
                        st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
                        st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
                        st.session_state.Sim_Winner_Display['GPP_Proj'].std()
                    ]
                })

                # Set the index of the summary dataframe as the "Metric" column
                summary_df = summary_df.set_index('Metric')

                # Display the summary dataframe
                st.subheader("Winning Frame Statistics")
                st.dataframe(summary_df.style.format({
                    'Salary': '{:.2f}',
                    'Proj': '{:.2f}',
                    'Own': '{:.2f}',
                    'Fantasy': '{:.2f}',
                    'GPP_Proj': '{:.2f}'
                }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)

        with tab2:
            if 'Sim_Winner_Display' in st.session_state:
                # Apply position mapping to FLEX column
                stack_counts = st.session_state.freq_copy['Team_count'].value_counts()
                
                # Calculate average statistics for each stack size
                stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({
                    'proj': 'mean',
                    'Own': 'mean',
                    'Fantasy': 'mean',
                    'GPP_Proj': 'mean'
                })
                
                # Combine counts and average statistics
                stack_summary = pd.concat([stack_counts, stack_stats], axis=1)
                stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
                stack_summary = stack_summary.reset_index()
                stack_summary.columns = ['Stack Size', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
                stack_summary = stack_summary.sort_values(by='Stack Size', ascending=True)
                stack_summary = stack_summary.set_index('Stack Size')
                
                # Display the summary dataframe
                st.subheader("Stack Type Statistics")
                st.dataframe(stack_summary.style.format({
                    'Count': '{:.0f}',
                    'Avg Proj': '{:.2f}',
                    'Avg Own': '{:.2f}',
                    'Avg Fantasy': '{:.2f}',
                    'Avg GPP_Proj': '{:.2f}'
                }).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
            else:
                st.write("Simulation data or position mapping not available.")
                
            
        with st.container():
            tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'SP Exposures', 'Team Exposures', 'Stack Size Exposures'])
            with tab1:
                if 'player_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.player_freq.to_csv().encode('utf-8'),
                        file_name='player_freq_export.csv',
                        mime='text/csv',
                        key='overall'
                    )
            with tab2:
                if 'sp_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.sp_freq.to_csv().encode('utf-8'),
                        file_name='sp_freq.csv',
                        mime='text/csv',
                        key='sp'
                    )
            with tab3:
                if 'team_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.team_freq.to_csv().encode('utf-8'),
                        file_name='team_freq.csv',
                        mime='text/csv',
                        key='team'
                    )
            with tab4:
                if 'stack_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.stack_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.stack_freq.to_csv().encode('utf-8'),
                        file_name='stack_freq.csv',
                        mime='text/csv',
                        key='stack'
                    )

with tab2:
    with st.expander("Info and Filters"):
        if st.button("Load/Reset Data", key='reset1'):
                st.cache_data.clear()
                for key in st.session_state.keys():
                    del st.session_state[key]
                DK_seed = init_DK_seed_frames(10000)
                FD_seed = init_FD_seed_frames(10000)
                dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
                dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
                fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
                
        slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'))
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
        sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
        lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)

        if site_var1 == 'Draftkings':
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = dk_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [5, 4, 3, 2, 1, 0]
            
            raw_baselines = dk_raw
            column_names = dk_columns
                    
        elif site_var1 == 'Fanduel':
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = fd_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [5, 4, 3, 2, 1, 0]
            
            raw_baselines = fd_raw
            column_names = fd_columns
        

        if st.button("Prepare data export", key='data_export'):
                if 'working_seed' in st.session_state:
                    if site_var1 == 'Draftkings':
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
                    elif site_var1 == 'Fanduel':
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
                    st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
                elif 'working_seed' not in st.session_state:
                    if site_var1 == 'Draftkings':
                        if slate_var1 == 'Main Slate':
                            st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)

                            dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
                            raw_baselines = dk_raw
                            column_names = dk_columns
                        elif slate_var1 == 'Secondary Slate':
                            st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)

                            dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
                            raw_baselines = dk_secondary
                            column_names = dk_columns
                        elif slate_var1 == 'Auxiliary Slate':
                            st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split_var)

                            dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
                            raw_baselines = dk_auxiliary
                            column_names = dk_columns
                

                    elif site_var1 == 'Fanduel':
                        if slate_var1 == 'Main Slate':
                            st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)

                            fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
                            raw_baselines = fd_raw
                            column_names = fd_columns
                        elif slate_var1 == 'Secondary Slate':
                            st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)

                            fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
                            raw_baselines = fd_secondary
                            column_names = fd_columns
                        elif slate_var1 == 'Auxiliary Slate':
                            st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split_var)

                            fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
                            raw_baselines = fd_auxiliary
                            column_names = fd_columns
                    if site_var1 == 'Draftkings':
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
                    elif site_var1 == 'Fanduel':
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
                        st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
                    st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
                data_export = st.session_state.working_seed.copy()
                st.download_button(
                    label="Export optimals set",
                    data=convert_df(data_export),
                    file_name='MLB_optimals_export.csv',
                    mime='text/csv',
                )
                for key in st.session_state.keys():
                    del st.session_state[key]
            
    if st.button("Load Data", key='load_data'):
        if site_var1 == 'Draftkings':
            if 'working_seed' in st.session_state:
                if site_var1 == 'Draftkings':
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
                elif site_var1 == 'Fanduel':
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            elif 'working_seed' not in st.session_state:
                if slate_var1 == 'Main Slate':
                    st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
                    dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))

                    raw_baselines = dk_raw
                    column_names = dk_columns
                elif slate_var1 == 'Secondary Slate':
                    st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)

                    dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
                    raw_baselines = dk_secondary
                    column_names = dk_columns
                elif slate_var1 == 'Auxiliary Slate':
                    st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split_var)

                    dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
                    raw_baselines = dk_auxiliary
                    column_names = dk_columns

                st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
                st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            
        elif site_var1 == 'Fanduel':
            if 'working_seed' in st.session_state:
                st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
                st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            elif 'working_seed' not in st.session_state:
                if slate_var1 == 'Main Slate':
                    st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
                    fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
                    
                    raw_baselines = fd_raw
                    column_names = fd_columns
                elif slate_var1 == 'Secondary Slate':
                    st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)

                    fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
                    raw_baselines = fd_secondary
                    column_names = fd_columns
                elif slate_var1 == 'Auxiliary Slate':
                    st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split_var)

                    fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
                    raw_baselines = fd_auxiliary
                    column_names = fd_columns
                st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
                st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            
    with st.container():
        if 'data_export_display' in st.session_state:
            st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)