Spaces:
Runtime error
Runtime error
File size: 10,987 Bytes
666100e 293e66f 666100e 293e66f 666100e 293e66f 666100e 991f67f d57fbd2 666100e a5a6287 666100e bc57db2 c7a9602 0a818cb d57fbd2 e86ca6c 0a818cb d57fbd2 c7a9602 0402531 4b1d079 12c5542 c7a9602 12c5542 d57fbd2 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b 12c5542 d57fbd2 121ea11 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b 12c5542 c7a9602 016be9e 293e66f bded814 12b0c46 016be9e 4f114ee eb59e4b c7a9602 016be9e dc7aba7 016be9e dc7aba7 016be9e 4f114ee c7a9602 d57fbd2 293e66f 58af4f6 016be9e c7a9602 58af4f6 016be9e dc7aba7 016be9e dc7aba7 016be9e 58af4f6 9f3097f 12c5542 ab169e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
db = client["testing_db"]
collection = db["DK_MLB_seed_frame"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
DK_seed = raw_display.to_numpy()
collection = db["FD_MLB_seed_frame"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']]
FD_seed = raw_display.to_numpy()
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con, client, db, DK_seed, FD_seed
gcservice_account, client, db, DK_seed, FD_seedb = init_conn()
MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
percentages_format = {'Exposure': '{:.2%}'}
dk_columns = [['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
fd_columns = [['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']]
@st.cache_data(ttl = 59)
def init_baselines():
sh = gcservice_account.open_by_url(MLB_Data)
worksheet = sh.worksheet('DK_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
dk_raw = load_display.dropna(subset=['Median'])
worksheet = sh.worksheet('FD_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
fd_raw = load_display.dropna(subset=['Median'])
return dk_raw, fd_raw
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_value_frequencies(np_array):
unique, counts = np.unique(np_array, return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
dk_raw, fd_raw = init_baselines()
tab1, tab2 = st.tabs(['Data Export', 'Contest Sims'])
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines()
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
if site_var1 == 'Draftkings':
raw_baselines = dk_raw
column_names = dk_columns
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
raw_baselines = fd_raw
column_names = fd_columns
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [4, 3, 2, 1, 0]
with col2:
if st.button("Load Seed Frame", key='seed_frame_load'):
if site_var1 == 'Draftkings':
working_seed = DK_seed
# working_seed_parse = working_seed[np.isin(working_seed[:, 2], team_var2)]
# working_seed_parse = working_seed[np.isin(working_seed[:, 3], stack_var2)]
data_export_display = pd.DataFrame(working_seed[0:1000], columns=column_names)
st.session_state.data_export_display = data_export_display.copy()
# st.session_state.data_export_freq = calculate_value_frequencies(st.session_state.data_export)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
with st.container():
if 'data_export_freq' in st.session_state:
st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
elif site_var1 == 'Fanduel':
working_seed = FD_seed
# working_seed_parse = working_seed[np.isin(working_seed[:, 2], team_var2)]
# working_seed_parse = working_seed[np.isin(working_seed[:, 3], stack_var2)]
data_export_display = pd.DataFrame(working_seed[0:1000], columns=column_names)
st.session_state.data_export_display = data_export_display.copy()
# st.session_state.data_export_freq = calculate_value_frequencies(st.session_state.data_export)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
with st.container():
if 'data_export_freq' in st.session_state:
st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
if st.button("Prepare data export", key='data_export'):
st.session_state.data_export = working_seed.copy()
if 'data_export' in st.session_state:
st.download_button(
label="Export optimals set",
data=convert_df(st.session_state.data_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
with col2:
st.write("Things will go here") |