File size: 15,694 Bytes
666100e
 
 
 
 
 
 
d0b9163
666100e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293e66f
 
 
 
3d5979b
293e66f
 
 
 
 
 
3d5979b
293e66f
74d5c0f
 
293e66f
666100e
55ec256
 
666100e
74d5c0f
666100e
74d5c0f
666100e
991f67f
3d5979b
 
666100e
3a254a9
666100e
 
bc57db2
d0b9163
bc57db2
 
d0b9163
bc57db2
 
 
d0b9163
bc57db2
 
d0b9163
bc57db2
 
 
c7a9602
 
0a818cb
d57fbd2
 
e86ca6c
0a818cb
d57fbd2
3d5979b
be550d2
d57fbd2
 
 
 
3d5979b
 
be550d2
3d5979b
 
 
 
d0b9163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a9602
0402531
4b1d079
12c5542
 
 
 
 
 
 
c7a9602
12c5542
 
 
 
 
d57fbd2
3ed3e6b
 
 
c7a9602
3ed3e6b
c7a9602
3ed3e6b
 
 
c7a9602
3ed3e6b
c7a9602
3ed3e6b
12c5542
 
d57fbd2
121ea11
3ed3e6b
 
c7a9602
3ed3e6b
c7a9602
3ed3e6b
 
 
c7a9602
3ed3e6b
c7a9602
3ed3e6b
12c5542
2864e61
 
 
3d5979b
 
2864e61
 
9ef68b7
7b6fe7a
2864e61
 
 
 
3d5979b
 
2864e61
 
7b6fe7a
 
2864e61
 
 
 
 
 
 
58af4f6
 
3d5979b
 
 
81203f9
3d5979b
 
 
12c5542
 
 
 
 
 
 
 
d0b9163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c5542
 
d0b9163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import pymongo

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
        db = client["testing_db"]

        collection = db["DK_MLB_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
        DK_seed = raw_display.to_numpy()

        collection = db["FD_MLB_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
        FD_seed = raw_display.to_numpy()
        
        MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'

        gc_con = gspread.service_account_from_dict(credentials, scope)

        client.close()
      
        return gc_con, client, db, DK_seed, FD_seed, MLB_Data

gcservice_account, client, db, DK_seed, FD_seed, MLB_Data = init_conn()

percentages_format = {'Exposure': '{:.2%}'}
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']

@st.cache_data(ttl = 60)
def init_baselines():
    sh = gcservice_account.open_by_url(MLB_Data)
    
    worksheet = sh.worksheet('Main_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    load_display['STDev'] = load_display['Median'] / 3
    
    dk_raw = load_display.dropna(subset=['Median'])
    
    worksheet = sh.worksheet('Main_FD_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    load_display['STDev'] = load_display['Median'] / 3
    
    fd_raw = load_display.dropna(subset=['Median'])

    return dk_raw, fd_raw

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

@st.cache_data
def calculate_DK_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :9], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array 

@st.cache_data
def calculate_FD_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :8], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array

@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict):
    SimVar = 1
    Sim_Winners = []
    fp_array = seed_frame
    
    # Pre-vectorize functions
    vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
    vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
    
    st.write('Simulating contest on frames')
    
    while SimVar <= Sim_size:
        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
            
        sample_arrays1 = np.c_[
            fp_random, 
            np.sum(np.random.normal(
                loc=vec_projection_map(fp_random[:, :-4]),
                scale=vec_stdev_map(fp_random[:, :-4])),
            axis=1)
        ]

        sample_arrays = sample_arrays1

        final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
        best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
        Sim_Winners.append(best_lineup)
        SimVar += 1
        
    return Sim_Winners

dk_raw, fd_raw = init_baselines()

tab1, tab2 = st.tabs(['Data Export', 'Contest Sims'])
with tab1:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              for key in st.session_state.keys():
                  del st.session_state[key]
              dk_raw, fd_raw = init_baselines()
              
        slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
        if site_var1 == 'Draftkings':
            raw_baselines = dk_raw
            column_names = dk_columns
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = dk_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [5, 4, 3, 2, 1, 0]
                    
        elif site_var1 == 'Fanduel':
            raw_baselines = fd_raw
            column_names = fd_columns
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = fd_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [4, 3, 2, 1, 0]
            
    with col2:
        if site_var1 == 'Draftkings':
            
            st.session_state.working_seed = DK_seed.copy()
            st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
            st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
            
            st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
            st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
            
        elif site_var1 == 'Fanduel':
            
            st.session_state.working_seed = FD_seed.copy()
            st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
            st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
            
            st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
            st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
            
        with st.container():
            if 'data_export_display' in st.session_state:
                st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
        with st.container():
            if 'data_export_freq' in st.session_state:
                st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
        
        if st.button("Prepare data export", key='data_export'):
            data_export = st.session_state.working_seed.copy()
            st.download_button(
                label="Export optimals set",
                data=convert_df(data_export),
                file_name='MLB_optimals_export.csv',
                mime='text/csv',
            )
            
with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset2'):
              st.cache_data.clear()
              for key in st.session_state.keys():
                  del st.session_state[key]
              dk_raw, fd_raw = init_baselines()
        sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
        sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
        if sim_site_var1 == 'Draftkings':
            raw_baselines = dk_raw
        elif sim_site_var1 == 'Fanduel':
            raw_baselines = fd_raw
            
        contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Massive'))
        if contest_var1 == 'Small':
            Contest_Size = 1000
        elif contest_var1 == 'Medium':
            Contest_Size = 5000
        elif contest_var1 == 'Large':
            Contest_Size = 10000
        elif contest_var1 == 'Massive':
            Contest_Size = 100000
        strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
        if strength_var1 == 'Not Very':
            sharp_split = [400000,100000] 
        elif strength_var1 == 'Average':
            sharp_split = [500000,200000]
        elif strength_var1 == 'Very':
            sharp_split = [500000,300000]

    
    with col2:
        maps_dict = {
                'Floor_map':dict(zip(raw_baselines.Player,raw_baselines.Floor)),
                'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
                'Ceiling_map':dict(zip(raw_baselines.Player,raw_baselines.Ceiling)),
                'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
                'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
                'Own_map':dict(zip(raw_baselines.Player,raw_baselines.Own)),
                'Small_Own_map':dict(zip(raw_baselines.Player,raw_baselines['Small Field Own%'])),
                'Large_Own_map':dict(zip(raw_baselines.Player,raw_baselines['Large Field Own%'])),
                'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
                'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
                'team_check_map':dict(zip(raw_baselines.Player,raw_baselines.Team))
                }
        Sim_Winners = sim_contest(500, st.session_state.working_seed)
        
        st.table(Sim_Winners.head(10))
                    
        # # Initial setup
        # Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
        # Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
        # Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['Projection'].astype(str) + Sim_Winner_Frame['Salary'].astype(str) + Sim_Winner_Frame['Own'].astype(str)
        # Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
        
        # # Type Casting
        # type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
        # Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
        
        # del FinalPortfolio, insert_port, type_cast_dict
        
        # # Sorting
        # st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
        # st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
        
        # # Data Copying
        # st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
        
        # # Data Copying
        # st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()