Spaces:
Runtime error
Runtime error
File size: 15,694 Bytes
666100e d0b9163 666100e 293e66f 3d5979b 293e66f 3d5979b 293e66f 74d5c0f 293e66f 666100e 55ec256 666100e 74d5c0f 666100e 74d5c0f 666100e 991f67f 3d5979b 666100e 3a254a9 666100e bc57db2 d0b9163 bc57db2 d0b9163 bc57db2 d0b9163 bc57db2 d0b9163 bc57db2 c7a9602 0a818cb d57fbd2 e86ca6c 0a818cb d57fbd2 3d5979b be550d2 d57fbd2 3d5979b be550d2 3d5979b d0b9163 c7a9602 0402531 4b1d079 12c5542 c7a9602 12c5542 d57fbd2 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b 12c5542 d57fbd2 121ea11 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b c7a9602 3ed3e6b 12c5542 2864e61 3d5979b 2864e61 9ef68b7 7b6fe7a 2864e61 3d5979b 2864e61 7b6fe7a 2864e61 58af4f6 3d5979b 81203f9 3d5979b 12c5542 d0b9163 12c5542 d0b9163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import pymongo
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
db = client["testing_db"]
collection = db["DK_MLB_seed_frame"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
DK_seed = raw_display.to_numpy()
collection = db["FD_MLB_seed_frame"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
FD_seed = raw_display.to_numpy()
MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
gc_con = gspread.service_account_from_dict(credentials, scope)
client.close()
return gc_con, client, db, DK_seed, FD_seed, MLB_Data
gcservice_account, client, db, DK_seed, FD_seed, MLB_Data = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
@st.cache_data(ttl = 60)
def init_baselines():
sh = gcservice_account.open_by_url(MLB_Data)
worksheet = sh.worksheet('Main_ROO')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
load_display['STDev'] = load_display['Median'] / 3
dk_raw = load_display.dropna(subset=['Median'])
worksheet = sh.worksheet('Main_FD_ROO')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
load_display['STDev'] = load_display['Median'] / 3
fd_raw = load_display.dropna(subset=['Median'])
return dk_raw, fd_raw
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :8], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict):
SimVar = 1
Sim_Winners = []
fp_array = seed_frame
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
sample_arrays1 = np.c_[
fp_random,
np.sum(np.random.normal(
loc=vec_projection_map(fp_random[:, :-4]),
scale=vec_stdev_map(fp_random[:, :-4])),
axis=1)
]
sample_arrays = sample_arrays1
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
dk_raw, fd_raw = init_baselines()
tab1, tab2 = st.tabs(['Data Export', 'Contest Sims'])
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines()
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
if site_var1 == 'Draftkings':
raw_baselines = dk_raw
column_names = dk_columns
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
raw_baselines = fd_raw
column_names = fd_columns
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [4, 3, 2, 1, 0]
with col2:
if site_var1 == 'Draftkings':
st.session_state.working_seed = DK_seed.copy()
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
elif site_var1 == 'Fanduel':
st.session_state.working_seed = FD_seed.copy()
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
with st.container():
if 'data_export_freq' in st.session_state:
st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
if st.button("Prepare data export", key='data_export'):
data_export = st.session_state.working_seed.copy()
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines()
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
if sim_site_var1 == 'Draftkings':
raw_baselines = dk_raw
elif sim_site_var1 == 'Fanduel':
raw_baselines = fd_raw
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Massive'))
if contest_var1 == 'Small':
Contest_Size = 1000
elif contest_var1 == 'Medium':
Contest_Size = 5000
elif contest_var1 == 'Large':
Contest_Size = 10000
elif contest_var1 == 'Massive':
Contest_Size = 100000
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
if strength_var1 == 'Not Very':
sharp_split = [400000,100000]
elif strength_var1 == 'Average':
sharp_split = [500000,200000]
elif strength_var1 == 'Very':
sharp_split = [500000,300000]
with col2:
maps_dict = {
'Floor_map':dict(zip(raw_baselines.Player,raw_baselines.Floor)),
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Ceiling_map':dict(zip(raw_baselines.Player,raw_baselines.Ceiling)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines.Own)),
'Small_Own_map':dict(zip(raw_baselines.Player,raw_baselines['Small Field Own%'])),
'Large_Own_map':dict(zip(raw_baselines.Player,raw_baselines['Large Field Own%'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
'team_check_map':dict(zip(raw_baselines.Player,raw_baselines.Team))
}
Sim_Winners = sim_contest(500, st.session_state.working_seed)
st.table(Sim_Winners.head(10))
# # Initial setup
# Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
# Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
# Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['Projection'].astype(str) + Sim_Winner_Frame['Salary'].astype(str) + Sim_Winner_Frame['Own'].astype(str)
# Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# # Type Casting
# type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
# Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# del FinalPortfolio, insert_port, type_cast_dict
# # Sorting
# st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
# st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# # Data Copying
# st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# # Data Copying
# st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy() |