File size: 23,531 Bytes
ffe7479
 
 
 
 
 
 
 
 
 
 
 
1e9e16a
 
 
 
 
ffe7479
 
 
1e9e16a
ffe7479
 
 
 
 
 
994dc2e
 
ffe7479
 
 
 
 
 
 
 
 
 
 
8d74161
 
277956f
ffe7479
 
 
 
 
 
 
 
8d74161
ffe7479
 
 
 
 
 
8d74161
ffe7479
 
 
 
 
 
 
45ba68f
535860f
ffe7479
 
 
8d74161
ffe7479
 
 
 
 
 
 
45ba68f
ffe7479
 
 
 
8d74161
ffe7479
 
 
 
 
 
45ba68f
5651fbf
a49189a
ffe7479
 
 
 
8d74161
ffe7479
 
 
 
 
 
45ba68f
ffe7479
 
 
 
 
 
8d74161
ffe7479
 
 
 
 
 
45ba68f
ffe7479
 
 
 
 
 
8d74161
ffe7479
 
 
 
 
 
45ba68f
ffe7479
 
 
 
 
 
 
8d74161
ffe7479
 
 
 
 
 
45ba68f
ffe7479
 
 
 
 
 
 
8d74161
ffe7479
 
 
 
 
 
45ba68f
ffe7479
 
 
 
 
 
 
8d74161
ffe7479
 
 
 
 
 
45ba68f
ffe7479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b34f93
ffe7479
 
 
 
 
 
 
 
 
 
 
 
 
 
103c734
ffe7479
35d5bc3
ffe7479
 
103c734
ffe7479
35d5bc3
ffe7479
 
103c734
ffe7479
35d5bc3
ffe7479
 
103c734
ffe7479
35d5bc3
33c2a96
ffe7479
103c734
ffe7479
35d5bc3
33c2a96
ffe7479
103c734
ffe7479
 
103c734
ffe7479
 
103c734
ffe7479
 
103c734
ffe7479
35d5bc3
ffe7479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f807d
ffe7479
 
 
 
 
 
 
 
 
 
 
 
94f807d
ffe7479
 
 
 
 
 
 
 
 
 
 
 
94f807d
ffe7479
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
from itertools import combinations

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "model-sheets-connect",
  "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
  "client_id": "100369174533302798535",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

wrong_acro = ['AZ', 'WSN', 'WSH', 'TB', 'KC', 'SD', 'CWS', 'SF']
right_acro = ['ARI', 'WAS', 'WAS', 'TBR', 'KCR', 'SDP', 'CHW', 'SFG']

SP_format = {'K%': '{:.2%}', 'BB%': '{:.2%}'}
SP_league_format = ['Strikeoutper', 'Walkper','xBA', 'xSLG', 'BABIP', 'xwOBA', 'AVG', 'True_AVG']
BP_league_format = ['Strikeoutper', 'Walkper','xBA', 'xSLG', 'BABIP', 'xwOBA', 'AVG', 'HWS Ratio']
hitter_format = {'K%': '{:.2%}', 'xHR/PA': '{:.2%}', 'Event/PA': '{:.2%}'}
offense_format = {'8+ For': '{:.2%}', '8+ For L5': '{:.2%}', '8+ For L10': '{:.2%}', 'Trending 8+ For': '{:.2%}'}
defense_format = {'8+ Allowed': '{:.2%}', '8+ Allowed L5': '{:.2%}', '8+ Allowed L10': '{:.2%}', 'Trending 8+ Allowed': '{:.2%}'}
R2_format = {'R2_to_Opp_szn': '{:.2%}', 'R2_to_Opp_sample': '{:.2%}', 'R2_to_Opp L5': '{:.2%}', 'R2_to_Opp L10': '{:.2%}', 'R2_to_Opp_Trend': '{:.2%}'}

data_hold = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'

sh = gc.open_by_url(data_hold)

@st.cache_resource(ttl = 300)
def load_time():
          worksheet = sh.worksheet('Timestamp')
          raw_stamp = worksheet.acell('a1').value
          
          t_stamp = f"Last update was at {raw_stamp}"
          
          return t_stamp

@st.cache_resource(ttl = 299)
def load_table(URL, specific_tab):
    worksheet = sh.worksheet(specific_tab)
    load_display = pd.DataFrame(worksheet.get_all_records())

    return load_display

@st.cache_resource(ttl = 299)
def True_AVG_Splits_load():
          
    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('True_AVG_Split')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.drop(columns=['HWSr (LHH)', 'HWSr (RHH)', 'HWSr (Overall)', 'Weighted HWSr',])
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats.sort_values(by='Weighted True AVG', ascending=True)

    return pitcher_stats

@st.cache_resource(ttl = 299)
def HWSr_Splits_load():
          
    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('True_AVG_Split')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.drop(columns=['True AVG (LHH)', 'True AVG (RHH)', 'True AVG (Overall)', 'Weighted True AVG',])
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats.sort_values(by='Weighted HWSr', ascending=True)
    
    return pitcher_stats

@st.cache_resource(ttl = 299)
def SP_Slate_Stats_load():

    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('Starting_Pitchers')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats.loc[pitcher_stats['Playing'] == 1]
    pitcher_stats = pitcher_stats.drop(columns=['Playing'])
    pitcher_stats = pitcher_stats.sort_values(by='True AVG', ascending=True)
    
    return pitcher_stats

@st.cache_resource(ttl = 299)
def RHH_load():

    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('Pitcher_Data (RHH)')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats.loc[pitcher_stats['Playing'] == 1]
    pitcher_stats = pitcher_stats.drop(columns=['Playing', 'Avg IP'])
    pitcher_stats = pitcher_stats.sort_values(by='True AVG', ascending=True)

    return pitcher_stats

@st.cache_resource(ttl = 299)
def LHH_load():

    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('Pitcher_Data (LHH)')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats.loc[pitcher_stats['Playing'] == 1]
    pitcher_stats = pitcher_stats.drop(columns=['Playing', 'Avg IP'])
    pitcher_stats = pitcher_stats.sort_values(by='True AVG', ascending=True)

    return pitcher_stats

@st.cache_resource(ttl = 299)
def Full_Stats_load():

    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('Pitcher_xData')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'xBA', 'True_AVG', 'xHRs']]
    pitcher_stats = pitcher_stats.sort_values(by='PA', ascending=False)
    pitcher_stats = pitcher_stats.drop_duplicates(subset='Player')
    pitcher_stats = pitcher_stats.set_index('Player')

    return pitcher_stats

@st.cache_resource(ttl = 299)
def Full_RHH_load():

    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('Pitcher_xData_RHH')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'xBA', 'True_AVG', 'xHRs']]
    pitcher_stats = pitcher_stats.sort_values(by='PA', ascending=False)
    pitcher_stats = pitcher_stats.drop_duplicates(subset='Player')
    pitcher_stats = pitcher_stats.set_index('Player')

    return pitcher_stats

@st.cache_resource(ttl = 299)
def Full_LHH_load():

    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('Pitcher_xData_LHH')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.dropna()
    pitcher_stats = pitcher_stats[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'xBA', 'True_AVG', 'xHRs']]
    pitcher_stats = pitcher_stats.sort_values(by='PA', ascending=False)
    pitcher_stats = pitcher_stats.drop_duplicates(subset='Player')
    pitcher_stats = pitcher_stats.set_index('Player')

    return pitcher_stats

@st.cache_resource(ttl = 299)
def Bullpen_Data_load():

    sh = gc.open_by_url(data_hold)
    worksheet = sh.worksheet('Bullpen_xData')
    pitcher_stats = pd.DataFrame(worksheet.get_all_records())
    pitcher_stats.apply(pd.to_numeric, errors='ignore')
    pitcher_stats = pitcher_stats.dropna()
    for checkVar in range(len(wrong_acro)):
            pitcher_stats['Names'] = pitcher_stats['Names'].replace(wrong_acro, right_acro)
    pitcher_stats = pitcher_stats.sort_values(by='xSLG', ascending=False)

    return pitcher_stats

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

t_stamp = load_time()

raw_baselines = load_table(data_hold, 'Starting_Pitchers')

pitcher_stats = load_table(data_hold, 'Starting_Pitchers')

hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
hitter_stats.replace('', np.nan, inplace=True)
hitter_stats.apply(pd.to_numeric, errors='ignore')
hitter_stats = hitter_stats.dropna(subset=['Order'])
hitter_stats = hitter_stats.dropna(subset=['Opp_SP'])

macro_tables = load_table(data_hold, 'Macro_Trending')

col1, col2 = st.columns([1, 5])

with col1:
    st.info(t_stamp)
    if st.button("Load/Reset Data", key='reset1'):
          st.cache_data.clear()
          t_stamp = load_time()
          
          pitcher_stats = load_table(data_hold, 'Starting_Pitchers')
          hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
          hitter_stats.replace('', np.nan, inplace=True)
          hitter_stats = hitter_stats.dropna(subset=['Order'])
    stat_type_var1 = st.radio("Are you looking at pitchers or hitters?", ('Pitchers', 'Hitters'), key='stat_type_var1')
    if stat_type_var1 == 'Pitchers':
        stat_var1 = st.radio("What sheets would you like to view?", ('True AVG Splits', 'HWSr Splits', 'Current Slate Stats', 'Stats vs. RHH', 'Stats vs. LHH', 'Full League Stats', 'Full League Stats vs. RHH',  'Full League Stats vs. LHH', 'Bullpen Data'), key='stat_var1')
        sp_split1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='sp_split1')
        if sp_split1 == 'Specific Games':
            sp_var1 = st.multiselect('Which teams would you like to include in the Table?', options = hitter_stats['Team'].unique(), key='sp_var1')
        elif sp_split1 == 'Full Slate Run':
            sp_var1 = hitter_stats.Team.values.tolist()
    elif stat_type_var1 == 'Hitters':
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
        if site_var1 == "Draftkings":
            hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
            hitter_stats.replace('', np.nan, inplace=True)
            hitter_stats = hitter_stats.dropna(subset=['Order'])
        elif site_var1 == "Fanduel":
            hitter_stats = load_table(data_hold, 'FD_Slate_Hitters')
            hitter_stats.replace('', np.nan, inplace=True)
            hitter_stats = hitter_stats.dropna(subset=['Order'])
        stat_var1 = st.radio("What sheets would you like to view?", options = ['Current Slate Player Stats', 'Current Slate Team Stats'], key='stat_var1')
        split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')      
        if pos_split1 == 'Specific Positions':
                 pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', '1B', '2B', '3B', 'SS', 'OF'])
        elif pos_split1 == 'All Positions':
                 pos_var1 = 'All'  
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = hitter_stats['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = hitter_stats.Team.values.tolist()

with col2:
    if stat_type_var1 == 'Pitchers':
        if stat_var1 == 'True AVG Splits':
            pitcher_stats = True_AVG_Splits_load()
            pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
            #pitcher_stats = pitcher_stats.set_index('Player')
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn_r').format(precision=3), use_container_width = True)
        if stat_var1 == 'HWSr Splits':
            pitcher_stats = HWSr_Splits_load()
            pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
            #pitcher_stats = pitcher_stats.set_index('Player')
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn_r').format(precision=3), use_container_width = True)
        elif stat_var1 == 'Current Slate Stats':
            pitcher_stats = SP_Slate_Stats_load()
            pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
            #pitcher_stats = pitcher_stats.set_index('Player')
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn_r').background_gradient(cmap='RdYlGn', subset='K%').format(SP_format, precision=2), use_container_width = True)
        elif stat_var1 == 'Stats vs. RHH':
            pitcher_stats = RHH_load()
            pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
            #pitcher_stats = pitcher_stats.set_index('Names')
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r', subset=['Opp RHH', 'Salary', 'BB%', 'True AVG', 'xSLG', 'xBA', 'Hits', 'Homeruns', 'xHRs', 'xHR/PA']).background_gradient(cmap='RdYlGn', subset='K%').format(SP_format, precision=2), use_container_width = True)
        elif stat_var1 == 'Stats vs. LHH':
            pitcher_stats = LHH_load()
            pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
            #pitcher_stats = pitcher_stats.set_index('Names')
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r', subset=['Opp LHH', 'Salary', 'BB%', 'True AVG', 'xSLG', 'xBA', 'Hits', 'Homeruns', 'xHRs', 'xHR/PA']).background_gradient(cmap='RdYlGn', subset='K%').format(SP_format, precision=2), use_container_width = True)
        elif stat_var1 == 'Full League Stats':
            pitcher_stats = Full_Stats_load()
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = SP_league_format), use_container_width = True)
        elif stat_var1 == 'Full League Stats vs. RHH':
            pitcher_stats = Full_RHH_load()
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = SP_league_format), use_container_width = True)
        elif stat_var1 == 'Full League Stats vs. LHH':
            pitcher_stats = Full_LHH_load()
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = SP_league_format), use_container_width = True)
        elif stat_var1 == 'Bullpen Data':
            pitcher_stats = Bullpen_Data_load()
            pitcher_stats = pitcher_stats[pitcher_stats['Names'].isin(sp_var1)]
            #pitcher_stats = pitcher_stats.set_index('Names')
            st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = BP_league_format), use_container_width = True)
    elif stat_type_var1 == 'Hitters':
        if stat_var1 == 'Current Slate Player Stats':
            if site_var1 == 'Draftkings':
                    hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
                    if pos_var1 != 'All':
                        hitter_stats = hitter_stats[hitter_stats['Position'].str.contains('|'.join(pos_var1))]  
            elif site_var1 == 'Fanduel':
                    hitter_stats = load_table(data_hold, 'FD_Slate_Hitters')
                    if pos_var1 != 'All':
                        hitter_stats = hitter_stats[hitter_stats['Position'].str.contains('|'.join(pos_var1))]  
            hitter_stats.apply(pd.to_numeric, errors='ignore')
            hitter_stats.replace('', np.nan, inplace=True)
            hitter_stats = hitter_stats.dropna(subset=['Order'])
            hitter_stats = hitter_stats.dropna(subset=['Opp_SP'])
            hitter_stats = hitter_stats.drop(columns=['IBB'])
            hitter_stats = hitter_stats.sort_values(by='Event/PA', ascending=False)
            hitter_stats = hitter_stats.set_index('Player')
            hitter_stats = hitter_stats[hitter_stats['Team'].isin(team_var1)]
            st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['K%', 'Order', 'Salary']).format(hitter_format, precision=0).format(precision=3, subset = ['xBA', 'xSLG']), use_container_width = True)
        elif stat_var1 == 'Current Slate Team Stats':
            if site_var1 == 'Draftkings':
                    hitter_stats = load_table(data_hold, 'DK_Slate_Teams')
            elif site_var1 == 'Fanduel':
                    hitter_stats = load_table(data_hold, 'FD_Slate_Teams')
            hitter_stats.apply(pd.to_numeric, errors='ignore')
            hitter_stats['Acro'] = hitter_stats['Team']
            hitter_stats.replace('', np.nan, inplace=True)
            hitter_stats = hitter_stats.dropna(subset=['Opp_SP'])
            hitter_stats = hitter_stats.sort_values(by='Event/PA', ascending=False)
            hitter_stats = hitter_stats.set_index('Team')
            hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
            st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['K%', 'Avg Salary']).format(hitter_format, precision=0).format(precision=3, subset = ['xBA', 'xSLG', 'Opp True AVG']), use_container_width = True)
        elif stat_var1 == 'Team Trending Stats (Offense)':
            hitter_stats = load_table(data_hold, 'Macro_Trending')
            hitter_stats.apply(pd.to_numeric, errors='ignore')
            for checkVar in range(len(wrong_acro)):
                    hitter_stats['Team'] = hitter_stats['Team'].replace(wrong_acro, right_acro)
            hitter_stats['Acro'] = hitter_stats['Team']
            hitter_stats.replace('', np.nan, inplace=True)
            hitter_stats = hitter_stats.dropna(subset=['Opp'])
            hitter_stats = hitter_stats[['Team', 'Opp', 'Avg Score', 'Avg Score L5', 'Avg Score L10', 'Trending Score', '8+ For', '8+ For L5', '8+ For L10', 'Trending 8+ For', 'Acro']]
            hitter_stats = hitter_stats.sort_values(by='Trending Score', ascending=False)
            hitter_stats = hitter_stats.set_index('Team')
            hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
            st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(offense_format, precision=2), height=1200, use_container_width = True)
        elif stat_var1 == 'Team Trending Stats (Defense)':
            hitter_stats = load_table(data_hold, 'Macro_Trending')
            hitter_stats.apply(pd.to_numeric, errors='ignore')
            for checkVar in range(len(wrong_acro)):
                    hitter_stats['Team'] = hitter_stats['Team'].replace(wrong_acro, right_acro)
            hitter_stats['Acro'] = hitter_stats['Team']
            hitter_stats.replace('', np.nan, inplace=True)
            hitter_stats = hitter_stats.dropna(subset=['Opp'])
            hitter_stats = hitter_stats[['Team', 'Opp', 'Avg Allowed', 'Avg Allowed L5', 'Avg Allowed L10', 'Trending Avg Allowed', '8+ Allowed', '8+ Allowed L5', '8+ Allowed L10', 'Trending 8+ Allowed', 'Acro']]
            hitter_stats = hitter_stats.sort_values(by='Trending Avg Allowed', ascending=False)
            hitter_stats = hitter_stats.set_index('Team')
            hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
            st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(defense_format, precision=2), height=1200, use_container_width = True)
        elif stat_var1 == 'Team Trending Stats (Matchup ELO)':
            hitter_stats = load_table(data_hold, 'Macro_Trending')
            hitter_stats.apply(pd.to_numeric, errors='ignore')
            for checkVar in range(len(wrong_acro)):
                    hitter_stats['Team'] = hitter_stats['Team'].replace(wrong_acro, right_acro)
            hitter_stats['Acro'] = hitter_stats['Team']
            hitter_stats.replace('', np.nan, inplace=True)
            hitter_stats = hitter_stats.dropna(subset=['Opp'])
            hitter_stats = hitter_stats[['Team', 'Opp', 'Avg Score', 'Avg Score L5', 'Avg Score L10', 'Trending Score', 'R2_to_Opp_szn', 'R2_to_Opp_sample', 'R2_to_Opp L5', 'R2_to_Opp L10', 'R2_to_Opp_Trend', 'Acro']]
            hitter_stats = hitter_stats.sort_values(by='R2_to_Opp_Trend', ascending=False)
            hitter_stats = hitter_stats.set_index('Team')
            hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
            st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(R2_format, precision=2), height=1200, use_container_width = True)  
if stat_type_var1 == 'Pitchers': 
        st.download_button(
                        label="Export Tables",
                        data=convert_df_to_csv(pitcher_stats),
                        file_name='MLB_Research_export.csv',
                        mime='text/csv',
        )
elif stat_type_var1 == 'Hitters': 
        st.download_button(
                        label="Export Tables",
                        data=convert_df_to_csv(hitter_stats),
                        file_name='MLB_Research_export.csv',
                        mime='text/csv',
        )