File size: 17,152 Bytes
4036c64
6ef6fac
 
 
 
6a6dae7
 
 
6ef6fac
4036c64
 
6a6dae7
4036c64
6a6dae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b647ce4
 
 
 
6a6dae7
 
4036c64
6a6dae7
 
6ef6fac
b647ce4
6a6dae7
b647ce4
 
 
 
6ef6fac
53152e8
4036c64
6a6dae7
 
 
 
 
4036c64
6ef6fac
 
 
 
9143c92
6ef6fac
 
4036c64
 
 
6ef6fac
 
 
 
 
 
4036c64
5b35c1a
765743d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6dae7
5b35c1a
 
 
 
 
 
 
6ef6fac
53152e8
6887e0b
765743d
6ef6fac
b647ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef6fac
 
 
b647ce4
 
 
 
 
765743d
b647ce4
 
6887e0b
767e1e6
f85e35e
6ef6fac
767e1e6
 
 
 
6ef6fac
6887e0b
6ef6fac
b647ce4
 
 
 
 
 
 
25d03a1
 
53152e8
25d03a1
53152e8
62db76d
 
53152e8
62db76d
53152e8
 
25d03a1
 
 
 
e38d1b9
25d03a1
 
e38d1b9
 
 
d70bdf4
e38d1b9
 
25d03a1
e38d1b9
25d03a1
 
 
 
 
 
53152e8
25d03a1
e38d1b9
25d03a1
 
 
 
 
 
 
 
 
53152e8
b647ce4
25d03a1
3e9ad43
b647ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48ec8ac
b647ce4
 
 
 
 
 
 
 
 
48ec8ac
b647ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef6fac
a819472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b647ce4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import streamlit as st
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }

        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NBA_DFS"]
     
        NBA_Data = st.secrets['NBA_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, db, NBA_Data
    
gcservice_account, gcservice_account2, db, NBA_Data = init_conn()

dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

@st.cache_data(ttl=300)
def load_overall_stats():
    try:
        sh = gcservice_account.open_by_url(NBA_Data)
    except:
        sh = gcservice_account2.open_by_url(NBA_Data)  
    
    worksheet = sh.worksheet('DK_Build_Up')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Salary'] > 0]
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw = raw_display.sort_values(by='Median', ascending=False)
    
    worksheet = sh.worksheet('FD_Build_Up')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw = raw_display.sort_values(by='Median', ascending=False)
    
    worksheet = sh.worksheet('Secondary_DK_Build')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
    
    worksheet = sh.worksheet('Secondary_FD_Build')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)

    worksheet = sh.worksheet('Player_Level_ROO')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    roo_raw = raw_display.sort_values(by='Median', ascending=False)

    timestamp = raw_display['timestamp'].values[0]

    return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp

@st.cache_data(ttl = 300)
def init_DK_lineups():  
    
        collection = db["DK_NBA_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        DK_seed = raw_display.head(10000).to_numpy()

        return DK_seed

@st.cache_data(ttl = 300)
def init_FD_lineups():  
    
        collection = db["FD_NBA_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        FD_seed = raw_display.head(10000).to_numpy()

        return FD_seed

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

tab1, tab2 = st.tabs(['Range of Outcomes', 'Uploads and Info'])

with tab1:

    col1, col2 = st.columns([1, 9])

    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
            st.cache_data.clear()
            dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
            dk_lineups = init_DK_lineups()
            fd_lineups = init_FD_lineups()
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
        site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
        if site_var2 == 'Draftkings':
            site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
        elif site_var2 == 'Fanduel':
            site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
        slate_split = st.radio("Are you viewing the main slate or the secondary slate?", ('Main Slate', 'Secondary'), key='slate_split')
        if slate_split == 'Main Slate':
            raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
        elif slate_split == 'Secondary':
            raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary']
        split_var2 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
        if split_var2 == 'Specific Games':
            team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
        elif split_var2 == 'Full Slate Run':
            team_var2 = raw_baselines.Team.values.tolist()
        pos_var2 = st.selectbox('View specific position?', options = ['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')

    with col2:
        display_container_1 = st.empty()
        display_dl_container_1 = st.empty()
        display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
        display_proj = display_proj.drop(columns=['site', 'version', 'slate', 'timestamp'])
        
        st.session_state.display_proj = display_proj
            
        with display_container_1:
            display_container = st.empty()
            if 'display_proj' in st.session_state:
                if pos_var2 == 'All':
                    st.session_state.display_proj = st.session_state.display_proj
                elif pos_var2 != 'All':
                    st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
                st.dataframe(st.session_state.display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
        
        with display_dl_container_1:
                display_dl_container = st.empty()
                if 'display_proj' in st.session_state:
                    st.download_button(
                                label="Export Tables",
                                data=convert_df_to_csv(st.session_state.display_proj),
                                file_name='NBA_ROO_export.csv',
                                mime='text/csv',
                    )

with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset2'):
            st.cache_data.clear()
            dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
            dk_lineups = init_DK_lineups()
            fd_lineups = init_FD_lineups()
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
              
        slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
        if site_var1 == 'Draftkings':
            raw_baselines = dk_raw
            column_names = dk_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = dk_raw.Player.values.tolist()
                    
        elif site_var1 == 'Fanduel':
            raw_baselines = fd_raw
            column_names = fd_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = dk_raw.Player.values.tolist()
        

        if st.button("Prepare data export", key='data_export'):
                data_export = st.session_state.working_seed.copy()
                st.download_button(
                    label="Export optimals set",
                    data=convert_df(data_export),
                    file_name='NBA_optimals_export.csv',
                    mime='text/csv',
                )
            
    with col2:
        if site_var1 == 'Draftkings':
            if 'working_seed' in st.session_state:
                st.session_state.working_seed = st.session_state.working_seed
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:151], columns=column_names)
            elif 'working_seed' not in st.session_state:
                st.session_state.working_seed = dk_lineups.copy()
                st.session_state.working_seed = st.session_state.working_seed
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:151], columns=column_names)
            
        elif site_var1 == 'Fanduel':
            if 'working_seed' in st.session_state:
                st.session_state.working_seed = st.session_state.working_seed
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:151], columns=column_names)
            elif 'working_seed' not in st.session_state:
                st.session_state.working_seed = fd_lineups.copy()
                st.session_state.working_seed = st.session_state.working_seed
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:151], columns=column_names)
                
        with st.container():
            if 'data_export_display' in st.session_state:
                st.dataframe(st.session_state.data_export_display.style.format(precision=2), use_container_width = True)