File size: 15,686 Bytes
eb17727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c276129
eb17727
 
 
 
c276129
 
 
 
67e2e04
 
 
 
f81438a
 
bf83885
 
 
 
 
588d083
 
c276129
 
f81438a
 
cc95c78
 
eb17727
1b37964
 
 
 
 
d9ad3e8
 
 
 
279ff8e
 
 
ce3bf55
279ff8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6034111
 
 
279ff8e
6034111
279ff8e
6034111
279ff8e
1b37964
ce3bf55
1b37964
 
 
c276129
d9ad3e8
eb17727
c276129
 
 
 
eb17727
 
 
 
d9ad3e8
734367c
 
eb17727
 
 
 
 
d9ad3e8
734367c
 
1b37964
6919d54
1b37964
 
 
 
 
 
734367c
 
 
 
 
 
 
 
 
 
 
eb17727
 
c276129
f7d4c5a
734367c
 
1b37964
d9ad3e8
279ff8e
6919d54
 
c276129
f7d4c5a
c276129
 
 
 
 
 
 
 
 
 
 
 
 
734367c
 
 
 
1b37964
279ff8e
c276129
6919d54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con

gcservice_account = init_conn()

NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'

@st.cache_resource(ttl = 600)
def init_baselines():
    sh = gcservice_account.open_by_url(NBA_Data)
    
    worksheet = sh.worksheet('Gamelog')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    gamelog_table = raw_display[raw_display['PLAYER_NAME'] != ""]
    gamelog_table = gamelog_table[['PLAYER_NAME', 'TEAM_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP', 'MIN', 'touches', 'PTS', 'FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A',
                                   'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'reboundChancesOffensive', 'OREB', 'reboundChancesDefensive', 'DREB', 'reboundChancesTotal', 'REB',
                                   'passes', 'secondaryAssists', 'freeThrowAssists', 'assists', 'STL', 'BLK', 'TOV', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy']]
    gamelog_table['assists'].replace("", 0, inplace=True)
    gamelog_table['reboundChancesTotal'].replace("", 0, inplace=True)
    gamelog_table['passes'].replace("", 0, inplace=True)
    gamelog_table['touches'].replace("", 0, inplace=True)
    gamelog_table['Fantasy'].replace("", 0, inplace=True)
    gamelog_table['FD_Fantasy'].replace("", 0, inplace=True)
    gamelog_table['REB'] = gamelog_table['REB'].astype(int)
    gamelog_table['assists'] = gamelog_table['assists'].astype(int)
    gamelog_table['reboundChancesTotal'] = gamelog_table['reboundChancesTotal'].astype(int)
    gamelog_table['passes'] = gamelog_table['passes'].astype(int)
    gamelog_table['touches'] = gamelog_table['touches'].astype(int)
    gamelog_table['Fantasy'] = gamelog_table['Fantasy'].astype(float)
    gamelog_table['FD_Fantasy'] = gamelog_table['FD_Fantasy'].astype(float)
    gamelog_table['rebound%'] = gamelog_table['REB'] / gamelog_table['reboundChancesTotal']
    gamelog_table['assists_per_pass'] = gamelog_table['assists'] / gamelog_table['passes']
    gamelog_table['Fantasy_per_touch'] = gamelog_table['Fantasy'] / gamelog_table['touches']
    gamelog_table['FD_Fantasy_per_touch'] = gamelog_table['FD_Fantasy'] / gamelog_table['touches']
    data_cols = gamelog_table.columns.drop(['PLAYER_NAME', 'TEAM_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP'])
    gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
    
    gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
                                            'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
                                            'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
                                            'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1)
    
    return gamelog_table

@st.cache_data(show_spinner=False)
def seasonlong_build(data_sample):
    season_long_table = data_sample[['Player', 'Team']]
    season_long_table['Min'] = data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('mean').astype(float)
    season_long_table['Touches'] = data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('mean').astype(float)
    season_long_table['Pts'] = data_sample.groupby(['Player', 'Season'], sort=False)['Pts'].transform('mean').astype(float)
    season_long_table['FGM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('mean').astype(float)
    season_long_table['FGA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('mean').astype(float)
    season_long_table['FG%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('sum').astype(int) /
                                   data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('sum').astype(int))
    season_long_table['FG3M'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('mean').astype(float)
    season_long_table['FG3A'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('mean').astype(float)
    season_long_table['FG3%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('sum').astype(int) /
                                   data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('sum').astype(int))
    season_long_table['FTM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('mean').astype(float)
    season_long_table['FTA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('mean').astype(float)
    season_long_table['FT%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('sum').astype(int) /
                                   data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('sum').astype(int))
    season_long_table['OREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB Chance'].transform('mean').astype(float)
    season_long_table['OREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB'].transform('mean').astype(float)
    season_long_table['DREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB Chance'].transform('mean').astype(float)
    season_long_table['DREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB'].transform('mean').astype(float)
    season_long_table['REB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('mean').astype(float)
    season_long_table['REB'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('mean').astype(float)
    season_long_table['Passes'] = data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('mean').astype(float)
    season_long_table['Alt Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Alt Assists'].transform('mean').astype(float)
    season_long_table['FT Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['FT Assists'].transform('mean').astype(float)
    season_long_table['Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('mean').astype(float)
    season_long_table['Stl'] = data_sample.groupby(['Player', 'Season'], sort=False)['Stl'].transform('mean').astype(float)
    season_long_table['Blk'] = data_sample.groupby(['Player', 'Season'], sort=False)['Blk'].transform('mean').astype(float)
    season_long_table['Tov'] = data_sample.groupby(['Player', 'Season'], sort=False)['Tov'].transform('mean').astype(float)
    season_long_table['PF'] = data_sample.groupby(['Player', 'Season'], sort=False)['PF'].transform('mean').astype(float)
    season_long_table['DD'] = data_sample.groupby(['Player', 'Season'], sort=False)['DD'].transform('mean').astype(float)
    season_long_table['TD'] = data_sample.groupby(['Player', 'Season'], sort=False)['TD'].transform('mean').astype(float)
    season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
    season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
    season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
                                     data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('sum').astype(int))
    season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('sum').astype(int) /
                                             data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('sum').astype(int))
    season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
                                              data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
    season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
                                                 data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
    season_long_table = season_long_table.drop_duplicates(subset='Player')
    
    season_long_table = season_long_table.set_axis(['Player', 'Team', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
                                                    'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
                                                    'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
                                                    'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
    df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
    return df

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

gamelog_table = init_baselines()
total_teams = gamelog_table.Team.values.unique().tolist()
total_dates = gamelog_table.Date.values.unique().tolist()

col1, col2 = st.columns([1, 9])
with col1:
    if st.button("Reset Data", key='reset1'):
              st.cache_data.clear()
              gamelog_table = init_baselines()
              total_teams = gamelog_table.Team.values.unique().tolist()
              total_dates = gamelog_table.Date.values.unique().tolist()
    
    split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
    split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
    
    if split_var2 == 'Specific Teams':
        team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
    elif split_var2 == 'All':
        team_var1 = total_teams
        
    split_var3 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Dates'), key='split_var3')
    
    if split_var3 == 'Specific Dates':
        low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
        high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
    elif split_var3 == 'All':
        low_date = min(total_dates)
        high_date = max(total_dates)
    
    min_var1 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1')

with col2:
    if split_var1 == 'Season Logs':
        display = st.container()
        gamelog_table = gamelog_table[gamelog_table['Min'] >= min_var1[0]]
        gamelog_table = gamelog_table[gamelog_table['Min'] <= min_var1[1]]
        gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
        season_long_table = seasonlong_build(gamelog_table)
        season_long_table = season_long_table.set_index('Player')
        display.dataframe(season_long_table.style.format(precision=2), use_container_width = True)  
        
    elif split_var1 == 'Gamelogs':
        display = st.container()
    
        bottom_menu = st.columns((4, 1, 1))
        with bottom_menu[2]:
            batch_size = st.selectbox("Page Size", options=[25, 50, 100])
        with bottom_menu[1]:
            total_pages = (
                int(len(gamelog_table) / batch_size) if int(len(gamelog_table) / batch_size) > 0 else 1
            )
            current_page = st.number_input(
                "Page", min_value=1, max_value=total_pages, step=1
            )
        with bottom_menu[0]:
            st.markdown(f"Page **{current_page}** of **{total_pages}** ")
        gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date]
        gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date]
        gamelog_table = gamelog_table[gamelog_table['Min'] >= min_var1[0]]
        gamelog_table = gamelog_table[gamelog_table['Min'] <= min_var1[1]]
        gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
        gamelog_table = gamelog_table.set_index('Player')
        pages = split_frame(gamelog_table, batch_size)
        display.dataframe(data=pages[current_page - 1].style.format(precision=2), use_container_width=True)