File size: 27,854 Bytes
58d7c0c
 
 
 
4b42724
 
58d7c0c
33eecb7
 
1194fb6
33eecb7
1194fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d7c0c
1194fb6
 
4b42724
1194fb6
 
 
58d7c0c
 
 
 
 
 
 
 
 
 
 
 
 
33eecb7
58d7c0c
1194fb6
 
 
 
58d7c0c
33eecb7
 
58d7c0c
 
 
33eecb7
 
58d7c0c
 
 
33eecb7
 
 
 
 
3feca2c
33eecb7
 
 
 
3feca2c
33eecb7
 
 
58d7c0c
33eecb7
58d7c0c
 
 
 
 
33eecb7
58d7c0c
33eecb7
58d7c0c
1194fb6
58d7c0c
 
 
 
 
 
 
33eecb7
 
58d7c0c
 
 
 
 
 
 
 
 
91ac673
58d7c0c
 
 
 
 
 
91ac673
9e7c263
3feca2c
 
9e7c263
 
58d7c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3585b
 
 
 
58d7c0c
ef3585b
58d7c0c
 
 
 
 
 
 
 
 
 
ef3585b
58d7c0c
ef3585b
3feca2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3585b
3feca2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3585b
 
9e7c263
 
 
 
3feca2c
 
ef3585b
3feca2c
 
6983062
 
 
 
3feca2c
6983062
3feca2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3585b
3feca2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b12dc5d
3feca2c
b12dc5d
3feca2c
 
 
ef3585b
58d7c0c
ef3585b
 
 
 
 
 
 
58d7c0c
ef3585b
 
 
 
 
58d7c0c
ef3585b
58d7c0c
 
ef3585b
 
 
3feca2c
1194fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import numpy as np
import pandas as pd
import streamlit as st
import gspread

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }
     
        NFL_Data = st.secrets['NFL_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, NFL_Data
    
gcservice_account, gcservice_account2, NFL_Data = init_conn()

wrong_acro = ['WSH', 'AZ']
right_acro = ['WAS', 'ARI']

game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}

team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
                   '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}','GPP%': '{:.2%}'}

@st.cache_resource(ttl = 600)
def player_stat_table():
    try:
        sh = gcservice_account.open_by_url(NFL_Data)
    except:
        sh = gcservice_account2.open_by_url(NFL_Data)
    worksheet = sh.worksheet('Player_Projections')
    player_stats = pd.DataFrame(worksheet.get_all_records())
    
    worksheet = sh.worksheet('DK_Stacks')
    load_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = load_display
    dk_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
    
    worksheet = sh.worksheet('FD_Stacks')
    load_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = load_display
    fd_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
    
    worksheet = sh.worksheet('DK_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    dk_roo_raw = load_display.dropna(subset=['Own'])
    
    worksheet = sh.worksheet('FD_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    fd_roo_raw = load_display.dropna(subset=['Own'])
    
    worksheet = sh.worksheet('Site_Info')
    site_slates = pd.DataFrame(worksheet.get_all_records())

    return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"

tab1, tab2 = st.tabs(['Pivot Finder', 'Uploads and Info'])

with tab1:
    col1, col2 = st.columns([1, 5])
    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
              opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
              t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
        data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
        if site_var1 == 'Draftkings':
              if data_var1 == 'User':
                  raw_baselines = proj_dataframe
              elif data_var1 != 'User':
                  raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
                  raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
                  raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
        elif site_var1 == 'Fanduel':
              if data_var1 == 'User':
                  raw_baselines = proj_dataframe
              elif data_var1 != 'User':
                  raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
                  raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
                  raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
        check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top X Owned'), key='check_seq')
        if check_seq == 'Single Player':
            player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player')
        elif check_seq == 'Top X Owned':
            top_x_var = st.number_input('How many players would you like to check?', min_value = 1, max_value = 10, value = 5, step = 1)
        Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
        Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
        pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
        if pos_var1 == 'Specific Positions':
            pos_var_list = st.multiselect('Which positions would you like to include?', options = raw_baselines['Position'].unique(), key='pos_var_list')
        elif pos_var1 == 'All Positions':
            pos_var_list = raw_baselines.Position.values.tolist()
        split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = raw_baselines.Team.values.tolist()
        
    with col2:
        placeholder = st.empty()
        displayholder = st.empty()


        if st.button('Simulate appropriate pivots'):
            with placeholder:
                if site_var1 == 'Draftkings':
                          working_roo = raw_baselines
                          working_roo.replace('', 0, inplace=True)
                if site_var1 == 'Fanduel':
                          working_roo = raw_baselines
                          working_roo.replace('', 0, inplace=True)
                          
                own_dict = dict(zip(working_roo.Player, working_roo.Own))
                team_dict = dict(zip(working_roo.Player, working_roo.Team))
                opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
                pos_dict = dict(zip(working_roo.Player, working_roo.Position))
                total_sims = 1000

                if check_seq == 'Single Player':
                    player_var = working_roo.loc[working_roo['Player'] == player_check]
                    player_var = player_var.reset_index()
                    working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
                    working_roo = working_roo[working_roo['Team'].isin(team_var1)]
                    working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
                    working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
    
                    flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
                    flex_file['Floor_raw'] = flex_file['Median'] * .25
                    flex_file['Ceiling_raw'] = flex_file['Median'] * 1.75
                    flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
                    flex_file['Floor'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * .15), flex_file['Floor_raw'])
                    flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
                    flex_file['Ceiling'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
                    flex_file['STD'] = flex_file['Median'] / 4
                    flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
                    hold_file = flex_file.copy()
                    overall_file = flex_file.copy()
                    salary_file = flex_file.copy()
    
                    overall_players = overall_file[['Player']]
    
                    for x in range(0,total_sims):    
                        salary_file[x] = salary_file['Salary']
    
                    salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
    
                    salary_file = salary_file.div(1000)
    
                    for x in range(0,total_sims):    
                        overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
    
                    overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
    
                    players_only = hold_file[['Player']]
                    raw_lineups_file = players_only
    
                    for x in range(0,total_sims):
                        maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
                        raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
                        players_only[x] = raw_lineups_file[x].rank(ascending=False)
    
                    players_only=players_only.drop(['Player'], axis=1)
    
                    salary_2x_check = (overall_file - (salary_file*2))
                    salary_3x_check = (overall_file - (salary_file*3))
                    salary_4x_check = (overall_file - (salary_file*4))
    
                    players_only['Average_Rank'] = players_only.mean(axis=1)
                    players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
                    players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
                    players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
                    players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
                    players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
                    players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
                    players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
    
                    players_only['Player'] = hold_file[['Player']]
    
                    final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
    
                    final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
                    final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
                    final_Proj['Own'] = final_Proj['Player'].map(own_dict)
                    final_Proj['Team'] = final_Proj['Player'].map(team_dict)
                    final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
                    final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
                    final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
                    final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
                    final_Proj['LevX'] = 0
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['CPT_Own'] = final_Proj['Own'] / 4
    
                    final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
                    final_Proj = final_Proj.set_index('Player')
                    st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)

                elif check_seq == 'Top X Owned':
                    if pos_var1 == 'Specific Positions':    
                            raw_baselines = raw_baselines[raw_baselines['Position'].isin(pos_var_list)]
                    player_check = raw_baselines['Player'].head(top_x_var).tolist()
                    final_proj_list = []
                    for players in player_check:
                        players_pos = pos_dict[players]
                        player_var = working_roo.loc[working_roo['Player'] == players]
                        player_var = player_var.reset_index()
                        working_roo_temp = working_roo[working_roo['Position'] == players_pos]
                        working_roo_temp = working_roo_temp[working_roo_temp['Team'].isin(team_var1)]
                        working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)]
                        working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)]
                        
                        flex_file = working_roo_temp[['Player', 'Position', 'Salary', 'Median']]
                        flex_file['Floor_raw'] = flex_file['Median'] * .25
                        flex_file['Ceiling_raw'] = flex_file['Median'] * 1.75
                        flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
                        flex_file['Floor'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * .15), flex_file['Floor_raw'])
                        flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
                        flex_file['Ceiling'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
                        flex_file['STD'] = flex_file['Median'] / 4
                        flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
                        hold_file = flex_file.copy()
                        overall_file = flex_file.copy()
                        salary_file = flex_file.copy()
                        
                        overall_players = overall_file[['Player']]
    
                        for x in range(0,total_sims):    
                            salary_file[x] = salary_file['Salary']
        
                        salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
        
                        salary_file = salary_file.div(1000)
        
                        for x in range(0,total_sims):    
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
        
                        overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
        
                        players_only = hold_file[['Player']]
                        raw_lineups_file = players_only
        
                        for x in range(0,total_sims):
                            maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
                            raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
                            players_only[x] = raw_lineups_file[x].rank(ascending=False)
        
                        players_only=players_only.drop(['Player'], axis=1)
        
                        salary_2x_check = (overall_file - (salary_file*2))
                        salary_3x_check = (overall_file - (salary_file*3))
                        salary_4x_check = (overall_file - (salary_file*4))
        
                        players_only['Average_Rank'] = players_only.mean(axis=1)
                        players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
                        players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
                        players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
                        players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
                        players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
                        players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
                        players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
        
                        players_only['Player'] = hold_file[['Player']]
        
                        final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
        
                        final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
                        final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
                        final_Proj['Own'] = final_Proj['Player'].map(own_dict)
                        final_Proj['Team'] = final_Proj['Player'].map(team_dict)
                        final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
                        final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
                        final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
                        final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
                        final_Proj['LevX'] = 0
                        final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                        final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                        final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                        final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                        final_Proj['CPT_Own'] = final_Proj['Own'] / 4
                        final_Proj['Pivot_source'] = players
        
                        final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
                        
                        final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
                        final_proj_list.append(final_Proj)
                        st.write(f'finished run for {players}')
                
                    # Concatenate all the final_Proj dataframes
                    final_Proj_combined = pd.concat(final_proj_list)
                    final_Proj_combined = final_Proj_combined.sort_values(by='LevX', ascending=False)
                    final_Proj_combined = final_Proj_combined[final_Proj_combined['Player'] != final_Proj_combined['Pivot_source']]
                    st.session_state.final_Proj = final_Proj_combined.reset_index(drop=True)  # Assign the combined dataframe back to final_Proj

            placeholder.empty()
  
        with displayholder.container():
            if 'final_Proj' in st.session_state:
                st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)

                st.download_button(
                    label="Export Tables",
                    data=convert_df_to_csv(st.session_state.final_Proj),
                    file_name='NFL_pivot_export.csv',
                    mime='text/csv',
                )
            else:
                st.write("Run some pivots my dude/dudette")

with tab2:
    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
    col1, col2 = st.columns([1, 5])

    with col1:
        proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
    
        if proj_file is not None:
                  try:
                            proj_dataframe = pd.read_csv(proj_file)
                  except:
                            proj_dataframe = pd.read_excel(proj_file)
    with col2:
        if proj_file is not None:  
                  st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)