Spaces:
Running
Running
File size: 43,956 Bytes
38b5924 6a7f490 38b5924 6a7f490 19c2796 38b5924 19c2796 6a7f490 19c2796 6a7f490 b7fd8ba 6a7f490 be18476 6a7f490 92d6486 6a7f490 92d6486 6a7f490 b7fd8ba 6a7f490 92d6486 6a7f490 92d6486 6a7f490 38b5924 6a7f490 19c2796 6a7f490 19c2796 6a7f490 240d9da 576f0f1 240d9da 1a1a009 daa996d 240d9da 38b5924 240d9da 1a1a009 38b5924 c2ffc4c 38b5924 6a7f490 38b5924 6a7f490 c2ffc4c 38b5924 92d6486 38b5924 6a7f490 38b5924 05170c5 d5200c6 05170c5 c2ffc4c 05170c5 c2ffc4c 05170c5 38b5924 c2ffc4c 38b5924 c2ffc4c 92d6486 38b5924 6a7f490 38b5924 be18476 6a7f490 38b5924 92d6486 c2ffc4c 92d6486 6a7f490 38b5924 6a7f490 38b5924 6a7f490 796d14d 38b5924 796d14d 6a7f490 796d14d 38b5924 796d14d 38b5924 be18476 92d6486 be18476 92d6486 be18476 92d6486 6a7f490 be18476 38b5924 be18476 38b5924 be18476 38b5924 be18476 38b5924 be18476 6a7f490 be18476 6a7f490 38b5924 6a7f490 38b5924 6a7f490 38b5924 9fccb53 38b5924 6a7f490 38b5924 6a7f490 a95448c 38b5924 6a7f490 a95448c 6a7f490 590da2e 5b493e6 590da2e 5b493e6 6a7f490 a95448c 6a7f490 a95448c 6a7f490 a95448c 27339c2 a95448c 6a7f490 a95448c 38b5924 05170c5 6a7f490 38b5924 6a7f490 38b5924 6a7f490 38b5924 6a7f490 be18476 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NHL_Database"]
return db
db = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #FFD700;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #DAA520;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_data(ttl = 600)
def init_DK_seed_frames(sharp_split):
collection = db["DK_NHL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sharp_split):
collection = db["FD_NHL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_baselines():
collection = db["Player_Level_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
load_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]
load_display['STDev'] = load_display['Median'] / 3
DK_load_display = load_display[load_display['Site'] == 'Draftkings']
DK_load_display = DK_load_display.drop_duplicates(subset=['Player'], keep='first')
dk_raw = DK_load_display.dropna(subset=['Median'])
dk_raw['Team'] = dk_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
FD_load_display = load_display[load_display['Site'] == 'Fanduel']
FD_load_display = FD_load_display.drop_duplicates(subset=['Player'], keep='first')
fd_raw = FD_load_display.dropna(subset=['Median'])
fd_raw['Team'] = fd_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
teams_playing_count = len(dk_raw.Team.unique())
return dk_raw, fd_raw, teams_playing_count
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count):
SimVar = 1
Sim_Winners = []
fp_array = seed_frame.copy()
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
# Calculate stack multipliers first
stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus
stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 12] == 4, 0.025 * (teams_playing_count - 8), 0))
stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 12] >= 5, 0.025 * (teams_playing_count - 12), 0))
# Apply multipliers to both loc and scale in the normal distribution
base_projections = np.sum(np.random.normal(
loc=vec_projection_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis],
scale=vec_stdev_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis]),
axis=1)
final_projections = base_projections
sample_arrays = np.c_[fp_random, final_projections]
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab1:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
elif contest_var1 == 'Medium':
Contest_Size = 5000
elif contest_var1 == 'Large':
Contest_Size = 10000
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 250000
elif strength_var1 == 'Average':
sharp_split = 100000
elif strength_var1 == 'Above Average':
sharp_split = 50000
elif strength_var1 == 'Very':
sharp_split = 10000
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
center_working['Freq'] = center_working['Freq'].astype(int)
center_working['Position'] = center_working['Player'].map(st.session_state.maps_dict['Pos_map'])
center_working['Salary'] = center_working['Player'].map(st.session_state.maps_dict['Salary_map'])
center_working['Proj Own'] = center_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
center_working['Exposure'] = center_working['Freq']/(1000)
center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own']
center_working['Team'] = center_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.center_freq = center_working.copy()
if sim_site_var1 == 'Draftkings':
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
wing_working['Freq'] = wing_working['Freq'].astype(int)
wing_working['Position'] = wing_working['Player'].map(st.session_state.maps_dict['Pos_map'])
wing_working['Salary'] = wing_working['Player'].map(st.session_state.maps_dict['Salary_map'])
wing_working['Proj Own'] = wing_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
wing_working['Exposure'] = wing_working['Freq']/(1000)
wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own']
wing_working['Team'] = wing_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.wing_freq = wing_working.copy()
if sim_site_var1 == 'Draftkings':
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
dmen_working['Freq'] = dmen_working['Freq'].astype(int)
dmen_working['Position'] = dmen_working['Player'].map(st.session_state.maps_dict['Pos_map'])
dmen_working['Salary'] = dmen_working['Player'].map(st.session_state.maps_dict['Salary_map'])
dmen_working['Proj Own'] = dmen_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
dmen_working['Exposure'] = dmen_working['Freq']/(1000)
dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own']
dmen_working['Team'] = dmen_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.dmen_freq = dmen_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
goalie_working['Freq'] = goalie_working['Freq'].astype(int)
goalie_working['Position'] = goalie_working['Player'].map(st.session_state.maps_dict['Pos_map'])
goalie_working['Salary'] = goalie_working['Player'].map(st.session_state.maps_dict['Salary_map'])
goalie_working['Proj Own'] = goalie_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
goalie_working['Exposure'] = goalie_working['Freq']/(1000)
goalie_working['Edge'] = goalie_working['Exposure'] - goalie_working['Proj Own']
goalie_working['Team'] = goalie_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.goalie_freq = goalie_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='MLB_consim_export.csv',
mime='text/csv',
)
tab1, tab2, tab3 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics', 'Stack Type Statistics'])
with tab1:
if 'Sim_Winner_Display' in st.session_state:
# Create a new dataframe with summary statistics
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
st.session_state.Sim_Winner_Display['salary'].min(),
st.session_state.Sim_Winner_Display['salary'].mean(),
st.session_state.Sim_Winner_Display['salary'].max(),
st.session_state.Sim_Winner_Display['salary'].std()
],
'Proj': [
st.session_state.Sim_Winner_Display['proj'].min(),
st.session_state.Sim_Winner_Display['proj'].mean(),
st.session_state.Sim_Winner_Display['proj'].max(),
st.session_state.Sim_Winner_Display['proj'].std()
],
'Own': [
st.session_state.Sim_Winner_Display['Own'].min(),
st.session_state.Sim_Winner_Display['Own'].mean(),
st.session_state.Sim_Winner_Display['Own'].max(),
st.session_state.Sim_Winner_Display['Own'].std()
],
'Fantasy': [
st.session_state.Sim_Winner_Display['Fantasy'].min(),
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
st.session_state.Sim_Winner_Display['Fantasy'].max(),
st.session_state.Sim_Winner_Display['Fantasy'].std()
],
'GPP_Proj': [
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Winning Frame Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}',
'Fantasy': '{:.2f}',
'GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
with tab2:
if 'Sim_Winner_Display' in st.session_state:
# Apply position mapping to FLEX column
if sim_site_var1 == 'Draftkings':
flex_positions = st.session_state.freq_copy['FLEX'].map(st.session_state.maps_dict['Pos_map'])
elif sim_site_var1 == 'Fanduel':
flex1_positions = st.session_state.freq_copy['FLEX1'].map(st.session_state.maps_dict['Pos_map'])
flex2_positions = st.session_state.freq_copy['FLEX2'].map(st.session_state.maps_dict['Pos_map'])
flex_positions = pd.concat([flex1_positions, flex2_positions])
# Count occurrences of each position in FLEX
flex_counts = flex_positions.value_counts()
# Calculate average statistics for each FLEX position
flex_stats = st.session_state.freq_copy.groupby(flex_positions).agg({
'proj': 'mean',
'Own': 'mean',
'Fantasy': 'mean',
'GPP_Proj': 'mean'
})
# Combine counts and average statistics
flex_summary = pd.concat([flex_counts, flex_stats], axis=1)
flex_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
flex_summary = flex_summary.reset_index()
flex_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
# Display the summary dataframe
st.subheader("FLEX Position Statistics")
st.dataframe(flex_summary.style.format({
'Count': '{:.0f}',
'Avg Proj': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Fantasy': '{:.2f}',
'Avg GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
else:
st.write("Simulation data or position mapping not available.")
with tab3:
if 'Sim_Winner_Display' in st.session_state:
# Apply position mapping to FLEX column
stack_counts = st.session_state.freq_copy['Team_count'].value_counts()
# Calculate average statistics for each stack size
stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({
'proj': 'mean',
'Own': 'mean',
'Fantasy': 'mean',
'GPP_Proj': 'mean'
})
# Combine counts and average statistics
stack_summary = pd.concat([stack_counts, stack_stats], axis=1)
stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
stack_summary = stack_summary.reset_index()
stack_summary.columns = ['Stack Size', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
stack_summary = stack_summary.sort_values(by='Stack Size', ascending=True)
stack_summary = stack_summary.set_index('Stack Size')
# Display the summary dataframe
st.subheader("Stack Type Statistics")
st.dataframe(stack_summary.style.format({
'Count': '{:.0f}',
'Avg Proj': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Fantasy': '{:.2f}',
'Avg GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
else:
st.write("Simulation data or position mapping not available.")
with st.container():
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'Center Exposures', 'Wing Exposures', 'Defense Exposures', 'Flex Exposures', 'Goalie Exposures', 'Team Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'center_freq' in st.session_state:
st.dataframe(st.session_state.center_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.center_freq.to_csv().encode('utf-8'),
file_name='center_freq.csv',
mime='text/csv',
key='center'
)
with tab3:
if 'wing_freq' in st.session_state:
st.dataframe(st.session_state.wing_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.wing_freq.to_csv().encode('utf-8'),
file_name='wing_freq.csv',
mime='text/csv',
key='wing'
)
with tab4:
if 'dmen_freq' in st.session_state:
st.dataframe(st.session_state.dmen_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.dmen_freq.to_csv().encode('utf-8'),
file_name='dmen_freq.csv',
mime='text/csv',
key='dmen'
)
with tab5:
if 'flex_freq' in st.session_state:
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
file_name='flex_freq.csv',
mime='text/csv',
key='flex'
)
with tab6:
if 'goalie_freq' in st.session_state:
st.dataframe(st.session_state.goalie_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.goalie_freq.to_csv().encode('utf-8'),
file_name='goalie_freq.csv',
mime='text/csv',
key='goalie'
)
with tab7:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
raw_baselines = fd_raw
column_names = fd_columns
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
data_export = st.session_state.working_seed.copy()
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NHL_optimals_export.csv',
mime='text/csv',
)
for key in st.session_state.keys():
del st.session_state[key]
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True) |