Spaces:
Runtime error
Runtime error
File size: 43,190 Bytes
d3b9a22 39acb49 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 25875fd b5c8be0 75c2d49 64a6f38 2d2b30d aa90872 dc5be21 2d2b30d aa90872 f34c8f9 ff49440 e00061c cb550b6 5f9821e 89f2eda d82f596 d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 2d2b30d d3b9a22 532d846 d3b9a22 b22d44d d82f596 b22d44d d82f596 b22d44d d82f596 b22d44d d3b9a22 5f9821e d3b9a22 5f9821e d3b9a22 2d2b30d d3b9a22 2d2b30d 64890b0 2d2b30d 324d7b4 2d2b30d d3b9a22 2d2b30d ee20ae9 2d2b30d ee20ae9 2d2b30d ee20ae9 2d2b30d ee20ae9 2d2b30d ee20ae9 2d2b30d ee20ae9 2d2b30d ee20ae9 2d2b30d d3b9a22 2d2b30d 64890b0 2d2b30d 324d7b4 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 2d2b30d d51f586 9d3aa81 d51f586 9d3aa81 d51f586 9d3aa81 d51f586 2d2b30d d51f586 532d846 d51f586 2d2b30d d51f586 532d846 d51f586 2d2b30d d51f586 2d2b30d 579cb0f 39acb49 579cb0f 2d2b30d 579cb0f 2d2b30d 579cb0f 2d2b30d 579cb0f 2d2b30d b7378ff 2d2b30d 532d846 2d2b30d 579cb0f 2d2b30d 579cb0f 5f9821e 2d2b30d 532d846 579cb0f 532d846 579cb0f ee20ae9 532d846 5f9821e 2d2b30d 579cb0f 5f9821e 579cb0f 408a6f9 2d2b30d 408a6f9 2d2b30d 408a6f9 d3b9a22 5f9821e d3b9a22 5f9821e d3b9a22 5f9821e d3b9a22 5f9821e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import time
from itertools import combinations
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
return gc
gcservice_account = init_conn()
expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'}
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1NmKa-b-2D3w7rRxwMPSchh31GKfJ1XcDI2GU8rXWnHI/edit#gid=943304327'
@st.cache_resource(ttl = 600)
def grab_baseline_stuff():
sh = gcservice_account.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Player_Data_Master')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace(' - ', 0, inplace=True)
raw_display.replace('', np.nan, inplace=True)
raw_display = raw_display.dropna(subset=' Clean Name ')
dk_raw_proj = raw_display[[' Clean Name ', 'Team', 'Opp', 'Line', 'PP Unit', ' Position ', ' DK Salary ', 'Final DK Projection', 'DK uploadID', 'DK_Own']]
dk_raw_proj = dk_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own'], axis=1)
dk_raw_proj = dk_raw_proj.dropna(subset='Salary')
fd_raw_proj = raw_display[[' Clean Name ', 'Team', 'Opp', 'Line', 'PP Unit', ' FD Position ', 'FD Salary', 'Final FD Projection', 'FD uploadID', 'FD_Own']]
fd_raw_proj = fd_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own'], axis=1)
fd_raw_proj = fd_raw_proj.dropna(subset='Salary')
dk_raw_proj['Salary'] = dk_raw_proj['Salary'].str.replace(',', '')
dk_raw_proj['Salary'] = dk_raw_proj['Salary'].str.replace('$', '').astype(float)
fd_raw_proj['Salary'] = fd_raw_proj['Salary'].str.replace(',', '')
fd_raw_proj['Salary'] = fd_raw_proj['Salary'].str.replace('$', '').astype(float)
dk_raw_proj['Median'] = dk_raw_proj['Median'].astype(float)
fd_raw_proj['Median'] = fd_raw_proj['Median'].astype(float)
dk_raw_proj['Own'] = dk_raw_proj['Own'].astype(float)
fd_raw_proj['Own'] = fd_raw_proj['Own'].astype(float)
dk_raw_proj['player_id'] = dk_raw_proj['player_id'].astype(str)
fd_raw_proj['player_id'] = fd_raw_proj['player_id'].astype(str)
dk_raw_proj['Name_ID'] = dk_raw_proj['Player'] + ' (' + dk_raw_proj['player_id'].str[:-2] + ')'
fd_raw_proj['Name_ID'] = fd_raw_proj['player_id'].str[:-2] + ':' + fd_raw_proj['Player']
dk_ids = dict(zip(dk_raw_proj['Player'], dk_raw_proj['Name_ID']))
fd_ids = dict(zip(fd_raw_proj['Player'], fd_raw_proj['Name_ID']))
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
return dk_raw_proj, fd_raw_proj, dk_ids, fd_ids, timestamp
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
dk_raw_proj, fd_raw_proj, dkid_dict, fdid_dict, timestamp = grab_baseline_stuff()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
opp_dict = dict(zip(dk_raw_proj.Team, dk_raw_proj.Opp))
tab1, tab2 = st.tabs(['Uploads and Info', 'Optimizer'])
with tab1:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Line', 'PP Unit', 'Own', and 'player_id'. The player_id is the draftkings or fanduel ID associated with the player for upload.")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
except:
proj_dataframe = pd.read_excel(proj_file)
with col2:
if proj_file is not None:
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with tab2:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_raw_proj, fd_raw_proj, dk_ids, fd_ids, timestamp = grab_baseline_stuff()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
slate_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var1')
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
if slate_var1 == 'User':
raw_baselines = proj_dataframe
elif slate_var1 != 'User':
raw_baselines = dk_raw_proj
elif site_var1 == 'Fanduel':
if slate_var1 == 'User':
raw_baselines = proj_dataframe
elif slate_var1 != 'User':
raw_baselines = fd_raw_proj
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP', 'Round Robin'), key='contest_var1')
if contest_var1 != 'Cash':
stack_var1 = st.selectbox('Which team are you stacking?', options = raw_baselines['Team'].unique(), key='stack_var1')
stack_size_var1 = st.selectbox('What size of stack?', options = [3, 4], key='stack_size_var1')
line_choice_var1 = st.selectbox('Which line for main?', options = [1, 2, 3, 4], key='line_choice_var1')
ministack_var1 = st.selectbox('Who should be the secondary stack?', options = raw_baselines['Team'].unique(), key='ministack_var1')
ministack_size_var1 = st.selectbox('What size of secondary stack?', options = [2, 3, 4], key='ministack_size_var1')
miniline_choice_var1 = st.selectbox('Which line for secondary?', options = [1, 2, 3, 4], key='miniline_choice_var1')
opp_var1 = opp_dict[stack_var1]
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the optimization?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
lock_var1 = st.multiselect("Are there any players you want to use in all lineups (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1')
avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var1')
linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var1')
if site_var1 == 'Draftkings':
min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
elif site_var1 == 'Fanduel':
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 54900, value = 54000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 55000, value = 55000, step = 100, key='max_sal1')
with col2:
raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
ownframe = raw_baselines.copy()
if contest_var1 == 'Cash':
ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (10 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (900 / ownframe['Own%'].sum())
if contest_var1 == 'Small Field GPP':
ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (900 / ownframe['Own%'].sum())
if contest_var1 == 'Large Field GPP':
ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (1.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (900 / ownframe['Own%'].sum())
raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Line', 'PP Unit', 'Median', 'Own']]
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
st.session_state.export_baselines = raw_baselines
st.session_state.display_baselines = raw_baselines
if st.button('Optimize'):
max_proj = 1000
max_own = 1000
total_proj = 0
total_own = 0
display_container = st.empty()
display_dl_container = st.empty()
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
lineup_display = []
check_list = []
lineups = []
portfolio = pd.DataFrame()
x = 1
with st.spinner('Wait for it...'):
with optimize_container:
while x <= linenum_var1:
sorted_lineup = []
p_used = []
cvar = 0
firvar = 0
secvar = 0
thirvar = 0
raw_proj_file = raw_baselines
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
flex_file = raw_flex_file
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var1), 1, 0)
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
player_line = dict(zip(flex_file['Player'], flex_file['Line']))
player_ppunit = dict(zip(flex_file['Player'], flex_file['PP Unit']))
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
if site_var1 == 'Draftkings':
if contest_var1 == 'Cash':
for flex in flex_file['Team'].unique():
sub_idx = flex_file[(flex_file['Team'] == flex) & (flex_file['Position'] != 'G')].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
elif contest_var1 != 'Cash':
for flex in flex_file['Team'].unique():
sub_idx = flex_file[(flex_file['Team'] == stack_var1) & (flex_file['Position'] != 'G') & (flex_file['Line'] == line_choice_var1)].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == stack_size_var1
for flex in flex_file['Team'].unique():
sub_idx = flex_file[(flex_file['Team'] == ministack_var1) & (flex_file['Position'] != 'G') & (flex_file['Line'] == miniline_choice_var1)].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == ministack_size_var1
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("G")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("W")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "D"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("W")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "D"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
elif site_var1 == 'Fanduel':
if contest_var1 == 'Cash':
for flex in flex_file['Team'].unique():
sub_idx = flex_file[(flex_file['Team'] == flex) & (flex_file['Position'] != 'G')].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
elif contest_var1 != 'Cash':
for flex in flex_file['Team'].unique():
sub_idx = flex_file[(flex_file['Team'] == stack_var1) & (flex_file['Position'] != 'G') & (flex_file['Line'] == line_choice_var1)].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == stack_size_var1
for flex in flex_file['Team'].unique():
sub_idx = flex_file[(flex_file['Team'] == ministack_var1) & (flex_file['Position'] != 'G') & (flex_file['Line'] == miniline_choice_var1)].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == ministack_size_var1
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("G")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("W")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "D"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("W")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "D"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
player_count = []
player_trim = []
lineup_list = []
if contest_var1 == 'Cash':
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
elif contest_var1 != 'Cash':
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
df['Line'] = df['Names'].map(player_line)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final = lineup_final.reset_index(drop=True)
if site_var1 == 'Draftkings':
line_hold = lineup_final[['Names']]
line_hold['pos'] = line_hold['Names'].map(player_pos)
cvar = 0
for pname in range(0,len(line_hold)):
if cvar == 2:
pname = len(line_hold)
elif cvar < 2:
if line_hold.iat[pname,1] == 'C':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
cvar = cvar + 1
p_used.extend(sorted_lineup)
wvar = 0
for pname in range(0,len(line_hold)):
if wvar == 3:
pname = len(line_hold)
elif wvar < 3:
if line_hold.iat[pname,1] in ['RW', 'LW']:
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
wvar = wvar + 1
p_used.extend(sorted_lineup)
dvar = 0
for pname in range(0,len(line_hold)):
if dvar == 2:
pname = len(line_hold)
elif dvar < 2:
if line_hold.iat[pname,1] == "D":
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
dvar = dvar + 1
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'G':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] != 'G':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
lineup_final['sorted'] = sorted_lineup
lineup_final = lineup_final.drop(columns=['Names'])
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
elif site_var1 == 'Fanduel':
line_hold = lineup_final[['Names']]
line_hold['pos'] = line_hold['Names'].map(player_pos)
cvar = 0
for pname in range(0,len(line_hold)):
if cvar == 2:
pname = len(line_hold)
elif cvar < 2:
if line_hold.iat[pname,1] == 'C':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
cvar = cvar + 1
p_used.extend(sorted_lineup)
wvar = 0
for pname in range(0,len(line_hold)):
if wvar == 2:
pname = len(line_hold)
elif wvar < 2:
if line_hold.iat[pname,1] == 'W':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
wvar = wvar + 1
p_used.extend(sorted_lineup)
dvar = 0
for pname in range(0,len(line_hold)):
if dvar == 2:
pname = len(line_hold)
elif dvar < 2:
if line_hold.iat[pname,1] == "D":
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
dvar = dvar + 1
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] != 'G':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'G':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
lineup_final['sorted'] = sorted_lineup
lineup_final = lineup_final.drop(columns=['Names'])
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
lineup_test = lineup_final
lineup_final = lineup_final.T
lineup_final['Cost'] = total_cost
lineup_final['Proj'] = total_proj
lineup_final['Own'] = total_own
lineup_test['Team'] = lineup_test['Names'].map(player_team)
lineup_test['Position'] = lineup_test['Names'].map(player_pos)
lineup_test['Line'] = lineup_test['Names'].map(player_line)
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
lineup_test['Own'] = lineup_test['Names'].map(player_own)
lineup_test = lineup_test.set_index('Names')
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
lineup_display.append(lineup_test)
with col2:
with st.container():
st.table(lineup_test)
max_proj = total_proj
max_own = total_own
check_list.append(total_proj)
portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)
x += 1
if site_var1 == 'Draftkings':
portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "W3", 5: "D1", 6: "D2", 7: "G", 8: "UTIL"}, inplace = True)
elif site_var1 == 'Fanduel':
portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "D1", 5: "D2", 6: "UTIL1", 7: "UTIL2", 8: "G"}, inplace = True)
portfolio = portfolio.dropna()
portfolio = portfolio.reset_index()
portfolio['Lineup_num'] = portfolio['index'] + 1
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
portfolio = portfolio.set_index('Lineup')
portfolio = portfolio.drop(columns=['index'])
st.session_state.portfolio = portfolio.drop_duplicates()
st.session_state.final_outcomes = portfolio
if site_var1 == 'Draftkings':
final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL', 'Cost', 'Proj', 'Own']]
final_outcomes_export = pd.DataFrame()
final_outcomes_export['C1'] = final_outcomes['C1']
final_outcomes_export['C2'] = final_outcomes['C2']
final_outcomes_export['W1'] = final_outcomes['W1']
final_outcomes_export['W2'] = final_outcomes['W2']
final_outcomes_export['W3'] = final_outcomes['W3']
final_outcomes_export['D1'] = final_outcomes['D1']
final_outcomes_export['D2'] = final_outcomes['D2']
final_outcomes_export['G'] = final_outcomes['G']
final_outcomes_export['UTIL'] = final_outcomes['UTIL']
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
final_outcomes_export['W2'].replace(dkid_dict, inplace=True)
final_outcomes_export['W3'].replace(dkid_dict, inplace=True)
final_outcomes_export['D1'].replace(dkid_dict, inplace=True)
final_outcomes_export['D2'].replace(dkid_dict, inplace=True)
final_outcomes_export['G'].replace(dkid_dict, inplace=True)
final_outcomes_export['UTIL'].replace(dkid_dict, inplace=True)
st.session_state.final_outcomes_export = final_outcomes_export.copy()
elif site_var1 == 'Fanduel':
final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'UTIL1', 'UTIL2', 'G', 'Cost', 'Proj', 'Own']]
final_outcomes_export = pd.DataFrame()
final_outcomes_export['C1'] = final_outcomes['C1']
final_outcomes_export['C2'] = final_outcomes['C2']
final_outcomes_export['W1'] = final_outcomes['W1']
final_outcomes_export['W2'] = final_outcomes['W2']
final_outcomes_export['D1'] = final_outcomes['D1']
final_outcomes_export['D2'] = final_outcomes['D2']
final_outcomes_export['UTIL1'] = final_outcomes['UTIL1']
final_outcomes_export['UTIL2'] = final_outcomes['UTIL2']
final_outcomes_export['G'] = final_outcomes['G']
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
final_outcomes_export['W2'].replace(dkid_dict, inplace=True)
final_outcomes_export['D1'].replace(dkid_dict, inplace=True)
final_outcomes_export['D2'].replace(dkid_dict, inplace=True)
final_outcomes_export['UTIL1'].replace(dkid_dict, inplace=True)
final_outcomes_export['UTIL2'].replace(dkid_dict, inplace=True)
final_outcomes_export['G'].replace(dkid_dict, inplace=True)
st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(player_pos)
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(player_sal)
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own) / 100
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(linenum_var1)
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(player_team)
st.session_state.player_freq = st.session_state.player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
with display_container:
display_container = st.empty()
if 'display_baselines' in st.session_state:
st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with display_dl_container:
display_dl_container = st.empty()
if 'export_baselines' in st.session_state:
st.download_button(
label="Export Projections",
data=convert_df_to_csv(st.session_state.export_baselines),
file_name='NHL_proj_export.csv',
mime='text/csv',
)
with optimize_container:
optimize_container = st.empty()
if 'final_outcomes' in st.session_state:
st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with download_container:
download_container = st.empty()
if site_var1 == 'Draftkings':
if 'final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.final_outcomes_export),
file_name='NHL_optimals_export.csv',
mime='text/csv',
)
elif site_var1 == 'Fanduel':
if 'FD_final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.FD_final_outcomes_export),
file_name='FD_NHL_optimals_export.csv',
mime='text/csv',
)
with freq_container:
freq_container = st.empty()
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True) |