File size: 33,599 Bytes
d3b9a22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2288d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b9a22
39acb49
 
87e322f
2d2b30d
b2288d3
 
 
 
2d2b30d
d3b9a22
25875fd
b5c8be0
75c2d49
3af66fd
9510450
aa90872
3af66fd
9510450
cb550b6
 
5f9821e
 
89f2eda
 
7167b7d
 
e8f5f83
 
d82f596
 
d3b9a22
2d2b30d
 
3bdd64d
 
 
d3b9a22
3bdd64d
d3b9a22
 
 
 
 
3bdd64d
2d2b30d
 
d3b9a22
b2288d3
d3b9a22
b2288d3
d3b9a22
 
 
 
 
3bdd64d
2d2b30d
adfdce1
 
d3b9a22
2d2b30d
d3b9a22
65a66b4
 
d3b9a22
 
adfdce1
9b57163
d3b9a22
adfdce1
9b57163
34ed1b9
9b57163
34ed1b9
d3b9a22
 
adfdce1
d3b9a22
adfdce1
9b57163
 
 
 
b2288d3
d3b9a22
 
adfdce1
d3b9a22
adfdce1
 
 
499c677
d3b9a22
b2288d3
d3b9a22
 
b2288d3
532d846
d3b9a22
adfdce1
 
 
b22d44d
 
d3b9a22
adfdce1
 
5d27e6e
5f9821e
35f52d4
 
 
 
 
 
d3b9a22
 
 
 
 
35f52d4
d3b9a22
 
 
 
 
 
 
 
2d2b30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b9a22
2d2b30d
 
 
 
8f56bf4
 
 
 
2d2b30d
8761f1c
ee20ae9
2d2b30d
 
 
 
 
 
8761f1c
ee20ae9
2d2b30d
 
ee20ae9
 
2d2b30d
 
8761f1c
2d2b30d
 
 
ee20ae9
8761f1c
2d2b30d
d3b9a22
2d2b30d
 
 
 
 
8f56bf4
 
 
 
2d2b30d
8761f1c
d51f586
2d2b30d
 
 
d51f586
2d2b30d
 
8761f1c
d51f586
2d2b30d
 
d51f586
 
2d2b30d
 
8761f1c
d51f586
2d2b30d
 
d51f586
8761f1c
2d2b30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d51f586
2d2b30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7378ff
2d2b30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532d846
2d2b30d
579cb0f
2d2b30d
 
 
 
 
 
579cb0f
5f9821e
 
 
 
2d2b30d
532d846
579cb0f
 
 
 
 
 
 
 
 
 
532d846
579cb0f
 
 
 
ee20ae9
 
 
 
 
 
 
 
532d846
5f9821e
 
2d2b30d
579cb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39964e4
 
 
 
 
 
 
 
 
5f9821e
 
579cb0f
408a6f9
2d2b30d
408a6f9
 
 
 
 
 
2d2b30d
408a6f9
 
d3b9a22
adfdce1
 
 
3bdd64d
 
 
 
 
adfdce1
 
 
 
 
 
 
 
 
 
5f9821e
adfdce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2288d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import time
from itertools import combinations

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }
     
        NHL_Data = st.secrets['NHL_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, NHL_Data
    
gcservice_account, gcservice_account2, NHL_Data = init_conn()

expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'}

@st.cache_resource(ttl = 599)
def grab_baseline_stuff():
    try:
        sh = gcservice_account.open_by_url(NHL_Data)
    except:
        sh = gcservice_account2.open_by_url(NHL_Data)
    worksheet = sh.worksheet('Player_Data_Master')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace('  -   ', 0, inplace=True)
    raw_display.replace('', np.nan, inplace=True)
    raw_display = raw_display.dropna(subset=' Clean Name ')
    dk_raw_proj = raw_display[[' Clean Name ', ' Team ', ' Opp ', ' Line ', ' PP Unit ', ' Position ', ' DK Salary ', ' Final DK Projection ', ' DK uploadID ', 'DK_Own', ' MainSlateDK ']]
    dk_raw_proj = dk_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own', 'MainSlateDK'], axis=1)
    dk_raw_proj = dk_raw_proj.dropna(subset='Salary')
    fd_raw_proj = raw_display[[' Clean Name ', ' Team ', ' Opp ', ' Line ', ' PP Unit ', ' FD Position ', ' FD Salary ', ' Final FD Projection ', ' FD uploadID ', 'FD_Own', ' MainSlateFD ']]
    fd_raw_proj = fd_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own', 'MainSlateFD'], axis=1)
    dk_raw_proj['Own'] = dk_raw_proj['Own'].astype(float)
    fd_raw_proj['Own'] = fd_raw_proj['Own'].astype(float)
    dk_raw_proj['player_id'] = dk_raw_proj['player_id'].astype(str)
    fd_raw_proj['player_id'] = fd_raw_proj['player_id'].astype(str)
    dk_raw_proj['Name_ID'] = dk_raw_proj['Player'] + ' (' + dk_raw_proj['player_id'].str[:-2] + ')'
    fd_raw_proj['Name_ID'] = fd_raw_proj['player_id'].str[:-2] + ':' + fd_raw_proj['Player']
    dk_raw_proj = dk_raw_proj.sort_values(by='Median', ascending=False)
    fd_raw_proj = fd_raw_proj.sort_values(by='Median', ascending=False)
    dk_raw_proj['Player'] = dk_raw_proj['Player'].str.strip()
    fd_raw_proj['Player'] = fd_raw_proj['Player'].str.strip()
    dk_ids = dict(zip(dk_raw_proj['Player'], dk_raw_proj['Name_ID']))
    fd_ids = dict(zip(fd_raw_proj['Player'], fd_raw_proj['Name_ID']))
    
    worksheet = sh.worksheet('Timestamp')
    timestamp = worksheet.acell('A1').value
    
    worksheet = sh.worksheet('Player_Lines_ROO')
    line_frame = pd.DataFrame(worksheet.get_all_records())

    return dk_raw_proj, fd_raw_proj, dk_ids, fd_ids, timestamp, line_frame

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

dk_raw_proj, fd_raw_proj, dkid_dict, fdid_dict, timestamp, line_frame = grab_baseline_stuff()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
opp_dict = dict(zip(dk_raw_proj.Team, dk_raw_proj.Opp))

tab1, tab2 = st.tabs(['Optimizer', 'Uploads and Info'])
        
with tab1:
    col1, col2 = st.columns([1, 5])
    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              dk_raw_proj, fd_raw_proj, dk_ids, fd_ids, timestamp, line_frame = grab_baseline_stuff()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
              for key in st.session_state.keys():
                  del st.session_state[key]
              
        slate_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var1')
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
        if slate_var1 != 'User':
            mainvar1 = st.radio("Main slate or Secondary?", ('Main Slate', 'Secondary'), key='mainvar1')
        if site_var1 == 'Draftkings':
              if slate_var1 == 'User':
                  init_baselines = proj_dataframe
                  
              elif slate_var1 != 'User':
                  init_baselines = dk_raw_proj
                  if mainvar1 == 'Main Slate':
                      init_baselines = init_baselines.loc[init_baselines['MainSlateDK'] == ' Main ']
                  if mainvar1 != 'Main Slate':
                      init_baselines = init_baselines.loc[init_baselines['MainSlateDK'] != ' Main ']
        elif site_var1 == 'Fanduel':
              if slate_var1 == 'User':
                  init_baselines = proj_dataframe
              elif slate_var1 != 'User':
                  init_baselines = fd_raw_proj
                  if mainvar1 == 'Main Slate':
                      init_baselines = init_baselines.loc[init_baselines['MainSlateFD'] == ' Main ']
                  if mainvar1 != 'Main Slate':
                      init_baselines = init_baselines.loc[init_baselines['MainSlateFD'] != ' Main ']
        contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'GPP'), key='contest_var1')
        split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include in the optimization?', options = init_baselines['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = init_baselines.Team.values.tolist()
        lock_var1 = st.multiselect("Are there any players you want to use in all lineups (Lock Button)?", options = init_baselines['Player'].unique(), key='lock_var1')
        avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = init_baselines['Player'].unique(), key='avoid_var1')
        linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 1, step = 1, key='linenum_var1')
        if site_var1 == 'Draftkings':
            min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1')
            max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
        elif site_var1 == 'Fanduel':
            min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 54900, value = 54000, step = 100, key='min_sal1')
            max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 55000, value = 55000, step = 100, key='max_sal1')
    with col2:
        init_baselines = init_baselines[init_baselines['Team'].isin(team_var1)]
        init_baselines = init_baselines[~init_baselines['Player'].isin(avoid_var1)]
        ownframe = init_baselines.copy()
        raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Line', 'PP Unit', 'Median', 'Own']]
        raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
        raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
        st.session_state.export_baselines = raw_baselines.copy()
        st.session_state.display_baselines = raw_baselines.copy()
        st.session_state.display_lines = line_frame[line_frame['Slate'] == mainvar1]
        
        display_container = st.empty()
        display_dl_container = st.empty()
        optimize_container = st.empty()
        download_container = st.empty()
        freq_container = st.empty()
        
        if st.button('Optimize'):
            max_proj = 1000
            max_own = 1000
            total_proj = 0
            total_own = 0
            
            lineup_display = []
            check_list = []
            lineups = []
            portfolio = pd.DataFrame()
            x = 1
    
            with st.spinner('Wait for it...'):
                with optimize_container:
                    while x <= linenum_var1:
                        sorted_lineup = []
                        p_used = []
                        cvar = 0
                        firvar = 0
                        secvar = 0
                        thirvar = 0

                        raw_proj_file = raw_baselines
                        raw_flex_file = raw_proj_file.dropna(how='all')
                        raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
                        flex_file = raw_flex_file
                        flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
                        flex_file['name_var'] = flex_file['Player']
                        flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var1), 1, 0)
                        player_ids = flex_file.index

                        overall_players = flex_file[['Player']]
                        overall_players['player_var_add'] = flex_file.index
                        overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)

                        player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
                        total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
                        player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
                        player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))

                        player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
                        player_team = dict(zip(flex_file['Player'], flex_file['Team']))
                        player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
                        player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
                        player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
                        player_line = dict(zip(flex_file['Player'], flex_file['Line']))
                        player_ppunit = dict(zip(flex_file['Player'], flex_file['PP Unit']))

                        obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
                        total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
                        total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1

                        if site_var1 == 'Draftkings':
                            
                            for flex in flex_file['lock'].unique():
                                sub_idx = flex_file[flex_file['lock'] == 1].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] != "RIP"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "G"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "C"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "W"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "C"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "W"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "D"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 2

                        elif site_var1 == 'Fanduel':
                            
                            for flex in flex_file['lock'].unique():
                                sub_idx = flex_file[flex_file['lock'] == 1].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] != "RIP"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "G"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "C"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "W"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "C"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "W"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2

                            for flex in flex_file['Position'].unique():
                                sub_idx = flex_file[flex_file['Position'] == "D"].index
                                total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 2

                        player_count = []
                        player_trim = []
                        lineup_list = []
                        
                        if contest_var1 == 'Cash':
                            obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
                            total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
                        elif contest_var1 != 'Cash':
                            obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
                            total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
                        

                        total_score.solve()
                        for v in total_score.variables():
                            if v.varValue > 0:
                                lineup_list.append(v.name)
                        df = pd.DataFrame(lineup_list)
                        df['Names'] = df[0].map(player_match)
                        df['Cost'] = df['Names'].map(player_sal)
                        df['Proj'] = df['Names'].map(player_proj)
                        df['Own'] = df['Names'].map(player_own)
                        df['Line'] = df['Names'].map(player_line)
                        total_cost = sum(df['Cost'])
                        total_own = sum(df['Own'])
                        total_proj = sum(df['Proj'])
                        lineup_raw = pd.DataFrame(lineup_list)
                        lineup_raw['Names'] = lineup_raw[0].map(player_match)
                        lineup_raw['value'] = lineup_raw[0].map(player_index_match)
                        lineup_final = lineup_raw.sort_values(by=['value'])
                        del lineup_final[lineup_final.columns[0]]
                        del lineup_final[lineup_final.columns[1]]
                        lineup_final = lineup_final.reset_index(drop=True)
                        
                        lineup_test = lineup_final
                        lineup_final = lineup_final.T
                        lineup_final['Cost'] = total_cost
                        lineup_final['Proj'] = total_proj
                        lineup_final['Own'] = total_own
                    
                        lineup_test['Team'] = lineup_test['Names'].map(player_team)
                        lineup_test['Position'] = lineup_test['Names'].map(player_pos)
                        lineup_test['Line'] = lineup_test['Names'].map(player_line)
                        lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
                        lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
                        lineup_test['Own'] = lineup_test['Names'].map(player_own)
                        lineup_test = lineup_test.set_index('Names')
                        lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)

                        lineup_display.append(lineup_test)

                        with col2:
                            with st.container():
                                st.table(lineup_test)

                        max_proj = total_proj
                        max_own = total_own

                        check_list.append(total_proj)

                        portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)

                        x += 1
    
                    if site_var1 == 'Draftkings':
                        portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "W3", 5: "D1", 6: "D2", 7: "G", 8: "UTIL"}, inplace = True)
                    elif site_var1 == 'Fanduel':
                        portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "D1", 5: "D2", 6: "UTIL1", 7: "UTIL2", 8: "G"}, inplace = True)
                    portfolio = portfolio.dropna()
                    portfolio = portfolio.reset_index()
                    portfolio['Lineup_num'] = portfolio['index'] + 1
                    portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
                    portfolio = portfolio.set_index('Lineup')
                    portfolio = portfolio.drop(columns=['index'])
                    
                    st.session_state.portfolio = portfolio.drop_duplicates()
                    
                    st.session_state.final_outcomes = portfolio
                    
                    if site_var1 == 'Draftkings':
                        final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL', 'Cost', 'Proj', 'Own']]
                        
                        final_outcomes_export = pd.DataFrame()
                        final_outcomes_export['C1'] = final_outcomes['C1']
                        final_outcomes_export['C2'] = final_outcomes['C2']
                        final_outcomes_export['W1'] = final_outcomes['W1']
                        final_outcomes_export['W2'] = final_outcomes['W2']
                        final_outcomes_export['W3'] = final_outcomes['W3']
                        final_outcomes_export['D1'] = final_outcomes['D1']
                        final_outcomes_export['D2'] = final_outcomes['D2']
                        final_outcomes_export['G'] = final_outcomes['G']
                        final_outcomes_export['UTIL'] = final_outcomes['UTIL']
                        final_outcomes_export['Salary'] = final_outcomes['Cost']
                        final_outcomes_export['Own'] = final_outcomes['Own']
                        final_outcomes_export['Proj'] = final_outcomes['Proj']
                        
                        final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['W2'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['W3'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['D1'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['D2'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['G'].replace(dkid_dict, inplace=True)
                        final_outcomes_export['UTIL'].replace(dkid_dict, inplace=True)
                        
                        st.session_state.final_outcomes_export = final_outcomes_export.copy()
                    elif site_var1 == 'Fanduel':
                        final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'UTIL1', 'UTIL2', 'G', 'Cost', 'Proj', 'Own']]
                        
                        final_outcomes_export = pd.DataFrame()
                        final_outcomes_export['C1'] = final_outcomes['C1']
                        final_outcomes_export['C2'] = final_outcomes['C2']
                        final_outcomes_export['W1'] = final_outcomes['W1']
                        final_outcomes_export['W2'] = final_outcomes['W2']
                        final_outcomes_export['D1'] = final_outcomes['D1']
                        final_outcomes_export['D2'] = final_outcomes['D2']
                        final_outcomes_export['UTIL1'] = final_outcomes['UTIL1']
                        final_outcomes_export['UTIL2'] = final_outcomes['UTIL2']
                        final_outcomes_export['G'] = final_outcomes['G']
                        final_outcomes_export['Salary'] = final_outcomes['Cost']
                        final_outcomes_export['Own'] = final_outcomes['Own']
                        final_outcomes_export['Proj'] = final_outcomes['Proj']
                        
                        final_outcomes_export['C1'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['C2'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['W1'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['W2'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['D1'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['D2'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['UTIL1'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['UTIL2'].replace(fdid_dict, inplace=True)
                        final_outcomes_export['G'].replace(fdid_dict, inplace=True)
                        
                        st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
                    
                    st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:8].values, return_counts=True)),
                                        columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                    st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
                    st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(player_pos)
                    st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(player_sal)
                    st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own) / 100
                    st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(linenum_var1)
                    st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(player_team)
      
                    st.session_state.player_freq = st.session_state.player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
                    st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
    
        with display_container:
            display_container = st.empty()
            if 'display_baselines' in st.session_state:
                tab1, tab2 = st.tabs(['Line Combo ROO', 'Player Projections'])
                with tab1:
                    st.dataframe(st.session_state.display_lines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
                with tab2:
                    st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)

        with display_dl_container:
                    display_dl_container = st.empty()
                    if 'export_baselines' in st.session_state:
                        st.download_button(
                            label="Export Projections",
                            data=convert_df_to_csv(st.session_state.export_baselines),
                            file_name='NHL_proj_export.csv',
                            mime='text/csv',
                        )        
                
        with optimize_container:
                    optimize_container = st.empty()
                    if 'final_outcomes' in st.session_state:
                        st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        
        with download_container:
            download_container = st.empty()
            if site_var1 == 'Draftkings':
                if 'final_outcomes_export' in st.session_state:
                    st.download_button(
                        label="Export Optimals",
                        data=convert_df_to_csv(st.session_state.final_outcomes_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                    )
            elif site_var1 == 'Fanduel':
                if 'FD_final_outcomes_export' in st.session_state:
                    st.download_button(
                        label="Export Optimals",
                        data=convert_df_to_csv(st.session_state.FD_final_outcomes_export),
                        file_name='FD_NHL_optimals_export.csv',
                        mime='text/csv',
                    )
        
        with freq_container:
            freq_container = st.empty()
            if 'player_freq' in st.session_state:
                st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)

with tab2:
    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Line', 'PP Unit', 'Own', and 'player_id'. The player_id is the draftkings or fanduel ID associated with the player for upload.")
    col1, col2 = st.columns([1, 5])

    with col1:
        proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
    
        if proj_file is not None:
                  try:
                            proj_dataframe = pd.read_csv(proj_file)
                  except:
                            proj_dataframe = pd.read_excel(proj_file)
    with col2:
        if proj_file is not None:  
                  st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)