Spaces:
Runtime error
Runtime error
File size: 33,599 Bytes
d3b9a22 b2288d3 d3b9a22 39acb49 87e322f 2d2b30d b2288d3 2d2b30d d3b9a22 25875fd b5c8be0 75c2d49 3af66fd 9510450 aa90872 3af66fd 9510450 cb550b6 5f9821e 89f2eda 7167b7d e8f5f83 d82f596 d3b9a22 2d2b30d 3bdd64d d3b9a22 3bdd64d d3b9a22 3bdd64d 2d2b30d d3b9a22 b2288d3 d3b9a22 b2288d3 d3b9a22 3bdd64d 2d2b30d adfdce1 d3b9a22 2d2b30d d3b9a22 65a66b4 d3b9a22 adfdce1 9b57163 d3b9a22 adfdce1 9b57163 34ed1b9 9b57163 34ed1b9 d3b9a22 adfdce1 d3b9a22 adfdce1 9b57163 b2288d3 d3b9a22 adfdce1 d3b9a22 adfdce1 499c677 d3b9a22 b2288d3 d3b9a22 b2288d3 532d846 d3b9a22 adfdce1 b22d44d d3b9a22 adfdce1 5d27e6e 5f9821e 35f52d4 d3b9a22 35f52d4 d3b9a22 2d2b30d d3b9a22 2d2b30d 8f56bf4 2d2b30d 8761f1c ee20ae9 2d2b30d 8761f1c ee20ae9 2d2b30d ee20ae9 2d2b30d 8761f1c 2d2b30d ee20ae9 8761f1c 2d2b30d d3b9a22 2d2b30d 8f56bf4 2d2b30d 8761f1c d51f586 2d2b30d d51f586 2d2b30d 8761f1c d51f586 2d2b30d d51f586 2d2b30d 8761f1c d51f586 2d2b30d d51f586 8761f1c 2d2b30d d51f586 2d2b30d b7378ff 2d2b30d 532d846 2d2b30d 579cb0f 2d2b30d 579cb0f 5f9821e 2d2b30d 532d846 579cb0f 532d846 579cb0f ee20ae9 532d846 5f9821e 2d2b30d 579cb0f 39964e4 5f9821e 579cb0f 408a6f9 2d2b30d 408a6f9 2d2b30d 408a6f9 d3b9a22 adfdce1 3bdd64d adfdce1 5f9821e adfdce1 b2288d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import time
from itertools import combinations
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": st.secrets['model_sheets_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
credentials2 = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
NHL_Data = st.secrets['NHL_Data']
gc = gspread.service_account_from_dict(credentials)
gc2 = gspread.service_account_from_dict(credentials2)
return gc, gc2, NHL_Data
gcservice_account, gcservice_account2, NHL_Data = init_conn()
expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'}
@st.cache_resource(ttl = 599)
def grab_baseline_stuff():
try:
sh = gcservice_account.open_by_url(NHL_Data)
except:
sh = gcservice_account2.open_by_url(NHL_Data)
worksheet = sh.worksheet('Player_Data_Master')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace(' - ', 0, inplace=True)
raw_display.replace('', np.nan, inplace=True)
raw_display = raw_display.dropna(subset=' Clean Name ')
dk_raw_proj = raw_display[[' Clean Name ', ' Team ', ' Opp ', ' Line ', ' PP Unit ', ' Position ', ' DK Salary ', ' Final DK Projection ', ' DK uploadID ', 'DK_Own', ' MainSlateDK ']]
dk_raw_proj = dk_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own', 'MainSlateDK'], axis=1)
dk_raw_proj = dk_raw_proj.dropna(subset='Salary')
fd_raw_proj = raw_display[[' Clean Name ', ' Team ', ' Opp ', ' Line ', ' PP Unit ', ' FD Position ', ' FD Salary ', ' Final FD Projection ', ' FD uploadID ', 'FD_Own', ' MainSlateFD ']]
fd_raw_proj = fd_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own', 'MainSlateFD'], axis=1)
dk_raw_proj['Own'] = dk_raw_proj['Own'].astype(float)
fd_raw_proj['Own'] = fd_raw_proj['Own'].astype(float)
dk_raw_proj['player_id'] = dk_raw_proj['player_id'].astype(str)
fd_raw_proj['player_id'] = fd_raw_proj['player_id'].astype(str)
dk_raw_proj['Name_ID'] = dk_raw_proj['Player'] + ' (' + dk_raw_proj['player_id'].str[:-2] + ')'
fd_raw_proj['Name_ID'] = fd_raw_proj['player_id'].str[:-2] + ':' + fd_raw_proj['Player']
dk_raw_proj = dk_raw_proj.sort_values(by='Median', ascending=False)
fd_raw_proj = fd_raw_proj.sort_values(by='Median', ascending=False)
dk_raw_proj['Player'] = dk_raw_proj['Player'].str.strip()
fd_raw_proj['Player'] = fd_raw_proj['Player'].str.strip()
dk_ids = dict(zip(dk_raw_proj['Player'], dk_raw_proj['Name_ID']))
fd_ids = dict(zip(fd_raw_proj['Player'], fd_raw_proj['Name_ID']))
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
worksheet = sh.worksheet('Player_Lines_ROO')
line_frame = pd.DataFrame(worksheet.get_all_records())
return dk_raw_proj, fd_raw_proj, dk_ids, fd_ids, timestamp, line_frame
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
dk_raw_proj, fd_raw_proj, dkid_dict, fdid_dict, timestamp, line_frame = grab_baseline_stuff()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
opp_dict = dict(zip(dk_raw_proj.Team, dk_raw_proj.Opp))
tab1, tab2 = st.tabs(['Optimizer', 'Uploads and Info'])
with tab1:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_raw_proj, fd_raw_proj, dk_ids, fd_ids, timestamp, line_frame = grab_baseline_stuff()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
slate_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var1')
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if slate_var1 != 'User':
mainvar1 = st.radio("Main slate or Secondary?", ('Main Slate', 'Secondary'), key='mainvar1')
if site_var1 == 'Draftkings':
if slate_var1 == 'User':
init_baselines = proj_dataframe
elif slate_var1 != 'User':
init_baselines = dk_raw_proj
if mainvar1 == 'Main Slate':
init_baselines = init_baselines.loc[init_baselines['MainSlateDK'] == ' Main ']
if mainvar1 != 'Main Slate':
init_baselines = init_baselines.loc[init_baselines['MainSlateDK'] != ' Main ']
elif site_var1 == 'Fanduel':
if slate_var1 == 'User':
init_baselines = proj_dataframe
elif slate_var1 != 'User':
init_baselines = fd_raw_proj
if mainvar1 == 'Main Slate':
init_baselines = init_baselines.loc[init_baselines['MainSlateFD'] == ' Main ']
if mainvar1 != 'Main Slate':
init_baselines = init_baselines.loc[init_baselines['MainSlateFD'] != ' Main ']
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'GPP'), key='contest_var1')
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the optimization?', options = init_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = init_baselines.Team.values.tolist()
lock_var1 = st.multiselect("Are there any players you want to use in all lineups (Lock Button)?", options = init_baselines['Player'].unique(), key='lock_var1')
avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = init_baselines['Player'].unique(), key='avoid_var1')
linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 1, step = 1, key='linenum_var1')
if site_var1 == 'Draftkings':
min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
elif site_var1 == 'Fanduel':
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 54900, value = 54000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 55000, value = 55000, step = 100, key='max_sal1')
with col2:
init_baselines = init_baselines[init_baselines['Team'].isin(team_var1)]
init_baselines = init_baselines[~init_baselines['Player'].isin(avoid_var1)]
ownframe = init_baselines.copy()
raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Line', 'PP Unit', 'Median', 'Own']]
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
st.session_state.export_baselines = raw_baselines.copy()
st.session_state.display_baselines = raw_baselines.copy()
st.session_state.display_lines = line_frame[line_frame['Slate'] == mainvar1]
display_container = st.empty()
display_dl_container = st.empty()
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
if st.button('Optimize'):
max_proj = 1000
max_own = 1000
total_proj = 0
total_own = 0
lineup_display = []
check_list = []
lineups = []
portfolio = pd.DataFrame()
x = 1
with st.spinner('Wait for it...'):
with optimize_container:
while x <= linenum_var1:
sorted_lineup = []
p_used = []
cvar = 0
firvar = 0
secvar = 0
thirvar = 0
raw_proj_file = raw_baselines
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
flex_file = raw_flex_file
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var1), 1, 0)
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
player_line = dict(zip(flex_file['Player'], flex_file['Line']))
player_ppunit = dict(zip(flex_file['Player'], flex_file['PP Unit']))
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
if site_var1 == 'Draftkings':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "RIP"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "G"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "W"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "W"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "D"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 2
elif site_var1 == 'Fanduel':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "RIP"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "G"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "W"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "W"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "D"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 2
player_count = []
player_trim = []
lineup_list = []
if contest_var1 == 'Cash':
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
elif contest_var1 != 'Cash':
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
df['Line'] = df['Names'].map(player_line)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final = lineup_final.reset_index(drop=True)
lineup_test = lineup_final
lineup_final = lineup_final.T
lineup_final['Cost'] = total_cost
lineup_final['Proj'] = total_proj
lineup_final['Own'] = total_own
lineup_test['Team'] = lineup_test['Names'].map(player_team)
lineup_test['Position'] = lineup_test['Names'].map(player_pos)
lineup_test['Line'] = lineup_test['Names'].map(player_line)
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
lineup_test['Own'] = lineup_test['Names'].map(player_own)
lineup_test = lineup_test.set_index('Names')
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
lineup_display.append(lineup_test)
with col2:
with st.container():
st.table(lineup_test)
max_proj = total_proj
max_own = total_own
check_list.append(total_proj)
portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)
x += 1
if site_var1 == 'Draftkings':
portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "W3", 5: "D1", 6: "D2", 7: "G", 8: "UTIL"}, inplace = True)
elif site_var1 == 'Fanduel':
portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "D1", 5: "D2", 6: "UTIL1", 7: "UTIL2", 8: "G"}, inplace = True)
portfolio = portfolio.dropna()
portfolio = portfolio.reset_index()
portfolio['Lineup_num'] = portfolio['index'] + 1
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
portfolio = portfolio.set_index('Lineup')
portfolio = portfolio.drop(columns=['index'])
st.session_state.portfolio = portfolio.drop_duplicates()
st.session_state.final_outcomes = portfolio
if site_var1 == 'Draftkings':
final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL', 'Cost', 'Proj', 'Own']]
final_outcomes_export = pd.DataFrame()
final_outcomes_export['C1'] = final_outcomes['C1']
final_outcomes_export['C2'] = final_outcomes['C2']
final_outcomes_export['W1'] = final_outcomes['W1']
final_outcomes_export['W2'] = final_outcomes['W2']
final_outcomes_export['W3'] = final_outcomes['W3']
final_outcomes_export['D1'] = final_outcomes['D1']
final_outcomes_export['D2'] = final_outcomes['D2']
final_outcomes_export['G'] = final_outcomes['G']
final_outcomes_export['UTIL'] = final_outcomes['UTIL']
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
final_outcomes_export['W2'].replace(dkid_dict, inplace=True)
final_outcomes_export['W3'].replace(dkid_dict, inplace=True)
final_outcomes_export['D1'].replace(dkid_dict, inplace=True)
final_outcomes_export['D2'].replace(dkid_dict, inplace=True)
final_outcomes_export['G'].replace(dkid_dict, inplace=True)
final_outcomes_export['UTIL'].replace(dkid_dict, inplace=True)
st.session_state.final_outcomes_export = final_outcomes_export.copy()
elif site_var1 == 'Fanduel':
final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'UTIL1', 'UTIL2', 'G', 'Cost', 'Proj', 'Own']]
final_outcomes_export = pd.DataFrame()
final_outcomes_export['C1'] = final_outcomes['C1']
final_outcomes_export['C2'] = final_outcomes['C2']
final_outcomes_export['W1'] = final_outcomes['W1']
final_outcomes_export['W2'] = final_outcomes['W2']
final_outcomes_export['D1'] = final_outcomes['D1']
final_outcomes_export['D2'] = final_outcomes['D2']
final_outcomes_export['UTIL1'] = final_outcomes['UTIL1']
final_outcomes_export['UTIL2'] = final_outcomes['UTIL2']
final_outcomes_export['G'] = final_outcomes['G']
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
final_outcomes_export['C1'].replace(fdid_dict, inplace=True)
final_outcomes_export['C2'].replace(fdid_dict, inplace=True)
final_outcomes_export['W1'].replace(fdid_dict, inplace=True)
final_outcomes_export['W2'].replace(fdid_dict, inplace=True)
final_outcomes_export['D1'].replace(fdid_dict, inplace=True)
final_outcomes_export['D2'].replace(fdid_dict, inplace=True)
final_outcomes_export['UTIL1'].replace(fdid_dict, inplace=True)
final_outcomes_export['UTIL2'].replace(fdid_dict, inplace=True)
final_outcomes_export['G'].replace(fdid_dict, inplace=True)
st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(player_pos)
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(player_sal)
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own) / 100
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(linenum_var1)
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(player_team)
st.session_state.player_freq = st.session_state.player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
with display_container:
display_container = st.empty()
if 'display_baselines' in st.session_state:
tab1, tab2 = st.tabs(['Line Combo ROO', 'Player Projections'])
with tab1:
st.dataframe(st.session_state.display_lines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with tab2:
st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with display_dl_container:
display_dl_container = st.empty()
if 'export_baselines' in st.session_state:
st.download_button(
label="Export Projections",
data=convert_df_to_csv(st.session_state.export_baselines),
file_name='NHL_proj_export.csv',
mime='text/csv',
)
with optimize_container:
optimize_container = st.empty()
if 'final_outcomes' in st.session_state:
st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with download_container:
download_container = st.empty()
if site_var1 == 'Draftkings':
if 'final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.final_outcomes_export),
file_name='NHL_optimals_export.csv',
mime='text/csv',
)
elif site_var1 == 'Fanduel':
if 'FD_final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.FD_final_outcomes_export),
file_name='FD_NHL_optimals_export.csv',
mime='text/csv',
)
with freq_container:
freq_container = st.empty()
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)
with tab2:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Line', 'PP Unit', 'Own', and 'player_id'. The player_id is the draftkings or fanduel ID associated with the player for upload.")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
except:
proj_dataframe = pd.read_excel(proj_file)
with col2:
if proj_file is not None:
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |