Spaces:
Running
Running
File size: 29,096 Bytes
c398214 ec97bef c398214 ec97bef c398214 ec97bef c398214 d5cdf35 ec97bef c398214 58e1c0d c398214 b605e68 c398214 7c9d326 ec25780 7c9d326 ec25780 9e30fe1 7c9d326 9e30fe1 c398214 7c9d326 9e30fe1 c398214 9e30fe1 7c9d326 9e30fe1 c398214 410c155 9e30fe1 7c9d326 9e30fe1 c398214 7c9d326 c398214 7c9d326 c398214 dd81fad 57ed052 c398214 dd81fad c398214 7c9d326 c398214 7c9d326 c398214 7c9d326 c398214 68e78da c398214 d0976ab dd81fad ef20cbe c398214 68e78da c398214 ef20cbe dd81fad 68e78da c398214 d0976ab ef20cbe 68e78da 68f92c7 68e78da c398214 68e78da c398214 68e78da c398214 68e78da c398214 7c9d326 c398214 7c9d326 c398214 7c9d326 c398214 7c9d326 c398214 410c155 c398214 7c9d326 c398214 7c9d326 c398214 410c155 c398214 7c9d326 c398214 7c9d326 c398214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": st.secrets['model_sheets_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
credentials2 = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
NHL_Data = st.secrets['NHL_Data']
gc = gspread.service_account_from_dict(credentials)
gc2 = gspread.service_account_from_dict(credentials2)
return gc, gc2, NHL_Data
gcservice_account, gcservice_account2, NHL_Data = init_conn()
@st.cache_resource(ttl = 600)
def init_baselines():
sh = gcservice_account.open_by_url(NHL_Data)
worksheet = sh.worksheet('Gamelog')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
gamelog_table = raw_display[raw_display['Player'] != ""]
gamelog_table = gamelog_table[['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'TotalAssists', 'FirstAssists', 'SecondAssists', 'TotalPoints', 'IPP',
'Shots', 'SH%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'RushAttempts', 'ReboundsCreated', 'PIM', 'TotalPenalties', 'Minor',
'Major', 'PenaltiesDrawn', 'Giveaways', 'Takeaways', 'Hits', 'HitsTaken', 'ShotsBlocked', 'FaceoffsWon',
'FaceoffsLost', 'Faceoffs%']]
gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
'Shots', 'SH%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
'Faceoffs Lost', 'Faceoffs %'], axis=1)
data_cols = gamelog_table.columns.drop(['Player', 'Team', 'Position', 'Date'])
gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
gamelog_table['Date'] = pd.to_datetime(gamelog_table['Date']).dt.date
gamelog_table['dk_shots_bonus'] = np.where((gamelog_table['Shots'] >= 5), 1, 0)
gamelog_table['dk_blocks_bonus'] = np.where((gamelog_table['Shots Blocked'] >= 3), 1, 0)
gamelog_table['dk_goals_bonus'] = np.where((gamelog_table['Goals'] >= 3), 1, 0)
gamelog_table['dk_points_bonus'] = np.where((gamelog_table['Total Points'] >= 3), 1, 0)
gamelog_table['dk_fantasy'] = sum([(gamelog_table['Goals'] * 8.5), (gamelog_table['Total Assists'] * 5), (gamelog_table['Shots'] * 1.5),
(gamelog_table['Shots Blocked'] * 1.3), (gamelog_table['dk_shots_bonus'] * 3), (gamelog_table['dk_blocks_bonus'] * 3),
(gamelog_table['dk_goals_bonus'] * 3), (gamelog_table['dk_points_bonus'] * 3)]).astype(float).round(2)
gamelog_table['fd_fantasy'] = sum([(gamelog_table['Goals'] * 12), (gamelog_table['Total Assists'] * 8), (gamelog_table['Shots'] * 1.6),
(gamelog_table['Shots Blocked'] * 1.6)]).astype(float).round(2)
gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
'dk_fantasy', 'fd_fantasy'], axis=1)
return gamelog_table
@st.cache_data(show_spinner=False)
def seasonlong_build(data_sample):
season_long_table = data_sample[['Player', 'Team', 'Position']]
season_long_table['TOI'] = data_sample.groupby(['Player', 'Team'], sort=False)['TOI'].transform('mean').astype(float)
season_long_table['Goals'] = data_sample.groupby(['Player', 'Team'], sort=False)['Goals'].transform('mean').astype(float)
season_long_table['Total Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Assists'].transform('mean').astype(float)
season_long_table['First Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['First Assists'].transform('mean').astype(float)
season_long_table['Second Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['Second Assists'].transform('mean').astype(float)
season_long_table['Total Points'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Points'].transform('mean').astype(float)
season_long_table['IPP'] = data_sample.groupby(['Player', 'Team'], sort=False)['IPP'].transform('mean').astype(float)
season_long_table['Shots'] = data_sample.groupby(['Player', 'Team'], sort=False)['Shots'].transform('mean').astype(float)
season_long_table['ixG'] = data_sample.groupby(['Player', 'Team'], sort=False)['ixG'].transform('mean').astype(float)
season_long_table['iCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iCF'].transform('mean').astype(float)
season_long_table['iFF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iFF'].transform('mean').astype(float)
season_long_table['iSCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iSCF'].transform('mean').astype(float)
season_long_table['iHDCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iHDCF'].transform('mean').astype(float)
season_long_table['Rush Attempts'] = data_sample.groupby(['Player', 'Team'], sort=False)['Rush Attempts'].transform('mean').astype(float)
season_long_table['Rebounds Created'] = data_sample.groupby(['Player', 'Team'], sort=False)['Rebounds Created'].transform('mean').astype(float)
season_long_table['PIM'] = data_sample.groupby(['Player', 'Team'], sort=False)['PIM'].transform('mean').astype(float)
season_long_table['Total Penalties'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Penalties'].transform('mean').astype(float)
season_long_table['Minor'] = data_sample.groupby(['Player', 'Team'], sort=False)['Minor'].transform('mean').astype(float)
season_long_table['Major'] = data_sample.groupby(['Player', 'Team'], sort=False)['Major'].transform('mean').astype(float)
season_long_table['Penalties Drawn'] = data_sample.groupby(['Player', 'Team'], sort=False)['Penalties Drawn'].transform('mean').astype(float)
season_long_table['Giveaways'] = data_sample.groupby(['Player', 'Team'], sort=False)['Giveaways'].transform('mean').astype(float)
season_long_table['Takeaways'] = data_sample.groupby(['Player', 'Team'], sort=False)['Takeaways'].transform('mean').astype(float)
season_long_table['Hits'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hits'].transform('mean').astype(float)
season_long_table['Hits Taken'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hits Taken'].transform('mean').astype(float)
season_long_table['Shots Blocked'] = data_sample.groupby(['Player', 'Team'], sort=False)['Shots Blocked'].transform('mean').astype(float)
season_long_table['Faceoffs Won'] = data_sample.groupby(['Player', 'Team'], sort=False)['Faceoffs Won'].transform('mean').astype(float)
season_long_table['Faceoffs Lost'] = data_sample.groupby(['Player', 'Team'], sort=False)['Faceoffs Lost'].transform('mean').astype(float)
season_long_table['dk_shots_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_shots_bonus'].transform('mean').astype(float)
season_long_table['dk_blocks_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_blocks_bonus'].transform('mean').astype(float)
season_long_table['dk_goals_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_goals_bonus'].transform('mean').astype(float)
season_long_table['dk_points_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_points_bonus'].transform('mean').astype(float)
season_long_table['dk_fantasy'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_fantasy'].transform('mean').astype(float)
season_long_table['fd_fantasy'] = data_sample.groupby(['Player', 'Team'], sort=False)['fd_fantasy'].transform('mean').astype(float)
season_long_table = season_long_table.drop_duplicates(subset='Player')
season_long_table = season_long_table.sort_values(by='dk_fantasy', ascending=False)
season_long_table = season_long_table.set_axis(['Player', 'Team', 'Position', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points',
'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties',
'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
'dk_fantasy', 'fd_fantasy'], axis=1)
return season_long_table
@st.cache_data(show_spinner=False)
def run_fantasy_corr(data_sample):
cor_testing = data_sample
date_list = cor_testing['Date'].unique().tolist()
player_list = cor_testing['Player'].unique().tolist()
corr_frame = pd.DataFrame()
corr_frame['DATE'] = date_list
for player in player_list:
player_testing = cor_testing[cor_testing['Player'] == player]
fantasy_map = dict(zip(player_testing['Date'], player_testing['dk_fantasy']))
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
players_fantasy = corr_frame.drop('DATE', axis=1)
corrM = players_fantasy.corr()
return corrM
@st.cache_data(show_spinner=False)
def run_min_corr(data_sample):
cor_testing = data_sample
date_list = cor_testing['Date'].unique().tolist()
player_list = cor_testing['Player'].unique().tolist()
corr_frame = pd.DataFrame()
corr_frame['DATE'] = date_list
for player in player_list:
player_testing = cor_testing[cor_testing['Player'] == player]
fantasy_map = dict(zip(player_testing['Date'], player_testing['TOI']))
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
players_fantasy = corr_frame.drop('DATE', axis=1)
corrM = players_fantasy.corr()
return corrM
@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
return df
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
gamelog_table = init_baselines()
basic_cols = ['Player', 'Team', 'Position', 'Date', 'TOI']
basic_season_cols = ['Player', 'Team', 'Position', 'TOI']
data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
'dk_fantasy', 'fd_fantasy']
season_data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points',
'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties',
'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
'dk_fantasy', 'fd_fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
tab1, tab2 = st.tabs(['Gamelogs', 'Correlation Matrix'])
with tab1:
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
gamelog_table = init_baselines()
basic_cols = ['Player', 'Team', 'Position', 'Date', 'TOI']
basic_season_cols = ['Player', 'Team', 'Position', 'TOI']
data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
'dk_fantasy', 'fd_fantasy']
season_data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points',
'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties',
'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
'dk_fantasy', 'fd_fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
elif split_var2 == 'All':
team_var1 = total_teams
split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
if split_var3 == 'Specific Dates':
low_date = st.date_input('Min Date:', value=None, format="MM/DD/YYYY", key='low_date')
if low_date is not None:
low_date = pd.to_datetime(low_date).date()
high_date = st.date_input('Max Date:', value=None, format="MM/DD/YYYY", key='high_date')
if high_date is not None:
high_date = pd.to_datetime(high_date).date()
elif split_var3 == 'All':
low_date = gamelog_table['Date'].min()
high_date = gamelog_table['Date'].max()
split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
if split_var4 == 'Specific Players':
player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1')
elif split_var4 == 'All':
player_var1 = total_players
min_var1 = st.slider("Is there a certain TOI range you want to view?", 0, 50, (0, 50), key='min_var1')
with col2:
working_data = gamelog_table
if split_var1 == 'Season Logs':
choose_cols = st.container()
with choose_cols:
choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display')
disp_stats = basic_season_cols + choose_disp
display = st.container()
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['TOI'] >= min_var1[0]]
working_data = working_data[working_data['TOI'] <= min_var1[1]]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
season_long_table = seasonlong_build(working_data)
season_long_table = season_long_table.set_index('Player')
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export seasonlogs Model",
data=convert_df_to_csv(season_long_table),
file_name='Seasonlogs_NHL_View.csv',
mime='text/csv',
)
elif split_var1 == 'Gamelogs':
choose_cols = st.container()
with choose_cols:
choose_disp = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='col_display')
gamelog_disp_stats = basic_cols + choose_disp
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['TOI'] >= min_var1[0]]
working_data = working_data[working_data['TOI'] <= min_var1[1]]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
working_data = working_data.sort_values(by='Date', ascending=False)
working_data = working_data.reset_index(drop=True)
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
display = st.container()
bottom_menu = st.columns((4, 1, 1))
with bottom_menu[2]:
batch_size = st.selectbox("Page Size", options=[25, 50, 100])
with bottom_menu[1]:
total_pages = (
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
)
current_page = st.number_input(
"Page", min_value=1, max_value=total_pages, step=1
)
with bottom_menu[0]:
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
pages = split_frame(gamelog_data, batch_size)
# pages = pages.set_index('Player')
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
st.download_button(
label="Export gamelogs Model",
data=convert_df_to_csv(gamelog_data),
file_name='Gamelogs_NBA_View.csv',
mime='text/csv',
)
with tab2:
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
gamelog_table = init_baselines()
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
corr_var = st.radio("Are you correlating fantasy or TOI?", ('Fantasy', 'TOI'), key='corr_var')
split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2')
if split_var1_t2 == 'Specific Teams':
corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2')
elif split_var1_t2 == 'Specific Players':
corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2')
split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2')
if split_var2_t2 == 'Specific Dates':
low_date_t2 = st.date_input('Min Date:', value=None, format="MM/DD/YYYY", key='low_date_t2')
if low_date_t2 is not None:
low_date_t2 = pd.to_datetime(low_date_t2).date()
high_date_t2 = st.date_input('Max Date:', value=None, format="MM/DD/YYYY", key='high_date_t2')
if high_date_t2 is not None:
high_date_t2 = pd.to_datetime(high_date_t2).date()
elif split_var2_t2 == 'All':
low_date_t2 = gamelog_table['Date'].min()
high_date_t2 = gamelog_table['Date'].max()
min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 50, (0, 50), key='min_var1_t2')
with col2:
if split_var1_t2 == 'Specific Teams':
display = st.container()
gamelog_table = gamelog_table.sort_values(by='dk_fantasy', ascending=False)
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2]
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2]
gamelog_table = gamelog_table[gamelog_table['TOI'] >= min_var1_t2[0]]
gamelog_table = gamelog_table[gamelog_table['TOI'] <= min_var1_t2[1]]
gamelog_table = gamelog_table[gamelog_table['Team'].isin(corr_var1_t2)]
if corr_var == 'Fantasy':
corr_display = run_fantasy_corr(gamelog_table)
elif corr_var == 'TOI':
corr_display = run_min_corr(gamelog_table)
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
elif split_var1_t2 == 'Specific Players':
display = st.container()
gamelog_table = gamelog_table.sort_values(by='dk_fantasy', ascending=False)
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2]
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2]
gamelog_table = gamelog_table[gamelog_table['TOI'] >= min_var1_t2[0]]
gamelog_table = gamelog_table[gamelog_table['TOI'] <= min_var1_t2[1]]
gamelog_table = gamelog_table[gamelog_table['Player'].isin(corr_var1_t2)]
if corr_var == 'Fantasy':
corr_display = run_fantasy_corr(gamelog_table)
elif corr_var == 'TOI':
corr_display = run_min_corr(gamelog_table)
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |