File size: 41,789 Bytes
2ec6e39
 
 
 
 
b52568e
 
2ec6e39
 
 
b52568e
 
 
 
 
7b1cdc1
b52568e
 
 
 
 
 
 
 
7b1cdc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52568e
 
7b1cdc1
2ec6e39
eb25c8a
 
7b1cdc1
 
2ec6e39
eb25c8a
b52568e
eb25c8a
2ec6e39
b52568e
 
3326c44
 
2ec6e39
d901c93
eb25c8a
 
644d661
eb25c8a
 
 
 
b52568e
 
 
dd4c4fc
b52568e
2fd8576
b52568e
49ee82c
 
eb25c8a
 
 
644d661
eb25c8a
 
49ee82c
eb25c8a
49ee82c
 
 
 
 
2fd8576
49ee82c
 
b52568e
eb25c8a
 
 
644d661
eb25c8a
 
0ada19e
eb25c8a
b52568e
 
 
dd4c4fc
b52568e
0ada19e
b52568e
49ee82c
 
eb25c8a
 
 
644d661
eb25c8a
 
49ee82c
eb25c8a
49ee82c
 
 
 
 
 
 
0ada19e
b52568e
eb25c8a
 
644d661
 
 
 
 
 
 
baf6e4b
bab4530
 
 
dd11913
644d661
d01a961
eb25c8a
644d661
eb25c8a
644d661
 
 
 
 
 
baf6e4b
bab4530
e4db190
644d661
d01a961
eb25c8a
644d661
b52568e
eb25c8a
644d661
 
 
 
 
 
 
bab4530
 
 
 
dd11913
644d661
 
d01a961
eb25c8a
644d661
eb25c8a
644d661
 
 
 
 
 
bab4530
 
e4db190
644d661
 
d01a961
eb25c8a
644d661
b52568e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc819f
 
b52568e
edc819f
 
 
e33b3d7
edc819f
6789cba
edc819f
 
 
 
b52568e
edc819f
 
e4db190
edc819f
9948927
 
 
 
6789cba
 
 
 
edc819f
 
 
b52568e
edc819f
b52568e
edc819f
 
 
 
 
 
b52568e
 
 
 
 
 
 
 
317e6a2
eb25c8a
57077e4
 
 
49ee82c
57077e4
b52568e
49ee82c
eb25c8a
0afef81
022b419
0afef81
022b419
49ee82c
eb25c8a
0afef81
022b419
0afef81
022b419
b52568e
 
2ec6e39
b52568e
 
 
 
 
2ec6e39
b52568e
 
 
 
 
 
 
49ee82c
eb25c8a
0afef81
022b419
0afef81
022b419
49ee82c
eb25c8a
0afef81
022b419
0afef81
022b419
b52568e
 
2ec6e39
b52568e
 
 
 
 
2ec6e39
b52568e
 
 
 
 
2ec6e39
 
b52568e
 
0afef81
b52568e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ec6e39
edc819f
2ec6e39
b52568e
2ec6e39
edc819f
 
317e6a2
57077e4
 
184b936
b52568e
 
184b936
eb25c8a
0afef81
022b419
0afef81
022b419
184b936
eb25c8a
0afef81
022b419
0afef81
022b419
b52568e
 
 
184b936
eb25c8a
0afef81
022b419
0afef81
022b419
184b936
eb25c8a
0afef81
022b419
0afef81
022b419
b52568e
 
 
 
2ec6e39
b52568e
2ec6e39
edc819f
b52568e
 
 
 
 
2ec6e39
b52568e
 
 
2ec6e39
b52568e
 
 
2ec6e39
b52568e
 
86e88b4
b52568e
 
 
 
 
e4db190
b52568e
 
 
a2dd3d5
b52568e
6789cba
 
86e88b4
b52568e
 
 
 
 
 
 
 
 
 
 
 
42001ae
b52568e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4db190
b52568e
 
 
a2dd3d5
b52568e
6789cba
 
86e88b4
b52568e
 
 
 
 
 
 
 
 
 
 
 
42001ae
b52568e
 
 
 
 
 
 
 
711af0e
b52568e
 
 
 
9e41cbc
b52568e
b54cc8c
86e88b4
b52568e
8ad8e4e
86e88b4
b52568e
 
0a4cccb
 
 
 
b52568e
 
 
 
 
 
 
 
86e88b4
b52568e
 
 
 
 
 
1052082
b52568e
 
 
 
5f0586f
 
 
 
d901c93
5f0586f
 
 
d901c93
5f0586f
 
0a4cccb
 
 
 
1052082
5f0586f
 
 
 
b52568e
 
800aaba
b52568e
 
800aaba
b52568e
 
 
 
 
 
800aaba
b52568e
 
800aaba
b52568e
 
 
 
 
86e88b4
b52568e
 
 
86e88b4
 
 
 
 
 
 
 
b52568e
86e88b4
 
 
b52568e
86e88b4
b52568e
 
 
dfbf052
b52568e
 
 
86e88b4
5f0586f
b52568e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f0586f
b52568e
e3a6c00
b52568e
 
5f0586f
 
b52568e
5f0586f
b52568e
 
5f0586f
b52568e
5f0586f
b52568e
 
5f0586f
 
b52568e
5f0586f
b52568e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import pymongo
import time

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }
        
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
     
        NFL_Data = st.secrets['NFL_Data']

        NBA_Data = st.secrets['NBA_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, client, NFL_Data, NBA_Data
    
gcservice_account, gcservice_account2, client, NFL_Data, NBA_Data = init_conn()

percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

@st.cache_data(ttl = 599)
def init_DK_seed_frames(sport): 
        if sport == 'NFL':
            db = client["NFL_Database"]
        elif sport == 'NBA':
            db = client["NBA_DFS"]
        
        collection = db[f"DK_{sport}_SD_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        DK_seed = raw_display.to_numpy()

        return DK_seed
    
@st.cache_data(ttl = 599)
def init_DK_secondary_seed_frames(sport):  
        
        if sport == 'NFL':
            db = client["NFL_Database"]
        elif sport == 'NBA':
            db = client["NBA_DFS"]
    
        collection = db[f"DK_{sport}_Secondary_SD_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        DK_second_seed = raw_display.to_numpy()

        return DK_second_seed
    
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sport):  
        
        if sport == 'NFL':
            db = client["NFL_Database"]
        elif sport == 'NBA':
            db = client["NBA_DFS"]
    
        collection = db[f"FD_{sport}_SD_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        FD_seed = raw_display.to_numpy()

        return FD_seed
    
@st.cache_data(ttl = 599)
def init_FD_secondary_seed_frames(sport):  
        
        if sport == 'NFL':
            db = client["NFL_Database"]
        elif sport == 'NBA':
            db = client["NBA_DFS"]
    
        collection = db[f"FD_{sport}_Secondary_SD_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        FD_second_seed = raw_display.to_numpy()

        return FD_second_seed

@st.cache_data(ttl = 599)
def init_baselines(sport):
    if sport == 'NFL':
        db = client["NFL_Database"] 
        collection = db['DK_SD_NFL_ROO'] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
                                   'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
        raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
        raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
        small_cpt_own_var = 100 / raw_display['small_CPT_Own_raw'].sum()
        raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
        raw_display['cpt_Median'] = raw_display['Median'] * 1.25
        raw_display['STDev'] = raw_display['Median'] / 4
        raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
        
        dk_raw = raw_display.dropna(subset=['Median'])
        
        collection = db['FD_SD_NFL_ROO'] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
                                   'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
        raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
        raw_display['small_CPT_Own'] = raw_display['CPT_Own']
        raw_display['cpt_Median'] = raw_display['Median']
        raw_display['STDev'] = raw_display['Median'] / 4
        raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
        
        fd_raw = raw_display.dropna(subset=['Median'])
    
    elif sport == 'NBA':
        db = client["NBA_DFS"] 
        collection = db['Player_SD_Range_Of_Outcomes'] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                                   'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
        raw_display['Small_Field_Own'] = raw_display['Large_Own']
        raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
        small_cpt_own_var = 100 / raw_display['small_CPT_Own_raw'].sum()
        raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
        raw_display['cpt_Median'] = raw_display['Median'] * 1.25
        raw_display = raw_display[raw_display['site'] == 'Draftkings']
        raw_display['STDev'] = raw_display['Median'] / 4
        raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
        
        dk_raw = raw_display.dropna(subset=['Median'])
        
        collection = db['Player_SD_Range_Of_Outcomes'] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                                   'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
        raw_display['Small_Field_Own'] = raw_display['Large_Own']
        raw_display['small_CPT_Own'] = raw_display['CPT_Own']
        raw_display['cpt_Median'] = raw_display['Median']
        raw_display = raw_display[raw_display['site'] == 'Fanduel']
        raw_display['STDev'] = raw_display['Median'] / 4
        raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
        
        fd_raw = raw_display.dropna(subset=['Median'])

    return dk_raw, fd_raw

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

@st.cache_data
def calculate_DK_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :6], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array 

@st.cache_data
def calculate_FD_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :5], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array

@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
    SimVar = 1
    Sim_Winners = []
    fp_array = seed_frame[:sharp_split, :]
    
    # Pre-vectorize functions
    vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
    vec_cpt_projection_map = np.vectorize(maps_dict['cpt_projection_map'].__getitem__)
    vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
    vec_cpt_stdev_map = np.vectorize(maps_dict['cpt_STDev_map'].__getitem__)
    
    st.write('Simulating contest on frames')
    
    while SimVar <= Sim_size:
        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
            
        sample_arrays1 = np.c_[
            fp_random,
            np.sum(np.random.normal(
                loc=np.concatenate([
                    vec_cpt_projection_map(fp_random[:, 0:1]),  # Apply cpt_projection_map to first column
                    vec_projection_map(fp_random[:, 1:-7])  # Apply original projection to remaining columns
                ], axis=1),
                scale=np.concatenate([
                    vec_cpt_stdev_map(fp_random[:, 0:1]),  # Apply cpt_projection_map to first column
                    vec_stdev_map(fp_random[:, 1:-7])  # Apply original projection to remaining columns
                ], axis=1)),
            axis=1)
        ]

        sample_arrays = sample_arrays1

        final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]]
        best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
        Sim_Winners.append(best_lineup)
        SimVar += 1
        
    return Sim_Winners

tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              for key in st.session_state.keys():
                  del st.session_state[key]
              dk_raw, fd_raw = init_baselines('NFL')
        
        sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sport_var1')
        dk_raw, fd_raw = init_baselines(sport_var1)
        slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown'), key='slate_var1')
            
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
        if site_var1 == 'Draftkings':
            if slate_var1 == 'Showdown':
                DK_seed = init_DK_seed_frames(sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
            elif slate_var1 == 'Secondary Showdown':
                DK_seed = init_DK_secondary_seed_frames(sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
            raw_baselines = dk_raw
            column_names = dk_columns
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = dk_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [5, 4, 3, 2, 1, 0]
                    
        elif site_var1 == 'Fanduel':
            if slate_var1 == 'Showdown':
                FD_seed = init_FD_seed_frames(sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
            elif slate_var1 == 'Secondary Showdown':
                FD_seed = init_FD_secondary_seed_frames(sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
            raw_baselines = fd_raw
            column_names = fd_columns
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = fd_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [4, 3, 2, 1, 0]
        

        if st.button("Prepare data export", key='data_export'):
                data_export = st.session_state.working_seed.copy()
                data_export[0:6, 0] = [export_id_dict[x] for x in data_export[0:6, 0]]
                st.download_button(
                    label="Export optimals set",
                    data=convert_df(data_export),
                    file_name='NFL_SD_optimals_export.csv',
                    mime='text/csv',
                )
            
    with col2:
        if st.button("Load Data", key='load_data'):
            if site_var1 == 'Draftkings':
                if 'working_seed' in st.session_state:
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                elif 'working_seed' not in st.session_state:
                    st.session_state.working_seed = DK_seed.copy()
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                
            elif site_var1 == 'Fanduel':
                if 'working_seed' in st.session_state:
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                elif 'working_seed' not in st.session_state:
                    st.session_state.working_seed = FD_seed.copy()
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                
        with st.container():
            if 'data_export_display' in st.session_state:
                st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
            
with tab1:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset2'):
              st.cache_data.clear()
              for key in st.session_state.keys():
                  del st.session_state[key]
              dk_raw, fd_raw = init_baselines('NFL')
        sim_sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sim_sport_var1')
        dk_raw, fd_raw = init_baselines(sim_sport_var1)
        sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown'), key='sim_slate_var1')
        sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
        if sim_site_var1 == 'Draftkings':
            if sim_slate_var1 == 'Showdown':
                DK_seed = init_DK_seed_frames(sim_sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
            elif sim_slate_var1 == 'Secondary Showdown':
                DK_seed = init_DK_secondary_seed_frames(sim_sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
            raw_baselines = dk_raw
            column_names = dk_columns
        elif sim_site_var1 == 'Fanduel':
            if sim_slate_var1 == 'Showdown':
                FD_seed = init_FD_seed_frames(sim_sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
            elif sim_slate_var1 == 'Secondary Showdown':
                FD_seed = init_FD_secondary_seed_frames(sim_sport_var1)
                if sport_var1 == 'NFL':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
                elif sport_var1 == 'NBA':
                    export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
            raw_baselines = fd_raw
            column_names = fd_columns
            
        contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
        if contest_var1 == 'Small':
            Contest_Size = 1000
        elif contest_var1 == 'Medium':
            Contest_Size = 5000
        elif contest_var1 == 'Large':
            Contest_Size = 10000
        elif contest_var1 == 'Custom':
            Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
        strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
        if strength_var1 == 'Not Very':
            sharp_split = 500000
        elif strength_var1 == 'Below Average':
            sharp_split = 400000
        elif strength_var1 == 'Average':
            sharp_split = 300000
        elif strength_var1 == 'Above Average':
            sharp_split = 200000
        elif strength_var1 == 'Very':
            sharp_split = 100000

    
    with col2:
        if st.button("Run Contest Sim"):
            if 'working_seed' in st.session_state:
                maps_dict = {
                        'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
                        'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
                        'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
                        'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
                        'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
                        'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
                        'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
                        'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
                        'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
                        }
                Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
                
                #st.table(Sim_Winner_Frame)
                            
                # Initial setup
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
                Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
                Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
                Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
                
                # Type Casting
                type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
                Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
                
                # Sorting
                st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
                st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
                
                # Data Copying
                st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
                
                # Data Copying
                st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
                
            else:
                if sim_site_var1 == 'Draftkings':
                    st.session_state.working_seed = DK_seed.copy()
                elif sim_site_var1 == 'Fanduel':
                    st.session_state.working_seed = FD_seed.copy()
                maps_dict = {
                        'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
                        'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
                        'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
                        'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
                        'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
                        'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
                        'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
                        'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
                        'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
                        }
                Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
                
                #st.table(Sim_Winner_Frame)
                            
                # Initial setup
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
                Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
                Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
                Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
                
                # Type Casting
                type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
                Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
                
                # Sorting
                st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
                st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
                
               # Data Copying
                st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
                st.session_state.Sim_Winner_Export.iloc[:, 0:6] = st.session_state.Sim_Winner_Export.iloc[:, 0:6].apply(lambda x: x.map(export_id_dict))
                
                # Data Copying
                st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
                freq_copy = st.session_state.Sim_Winner_Display
            
            if sim_site_var1 == 'Draftkings':
                freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:6].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:5].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            freq_working['Freq'] = freq_working['Freq'].astype(int)
            freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
            if sim_site_var1 == 'Draftkings':
                freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map']) / 1.5
            elif sim_site_var1 == 'Fanduel':
                freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
            freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
            freq_working['Exposure'] = freq_working['Freq']/(1000)
            freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
            freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
            st.session_state.player_freq = freq_working.copy()

            if sim_site_var1 == 'Draftkings':
                cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            cpt_working['Freq'] = cpt_working['Freq'].astype(int)
            cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
            cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
            cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['cpt_Own_map']) / 100
            cpt_working['Exposure'] = cpt_working['Freq']/(1000)
            cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
            cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
            st.session_state.sp_freq = cpt_working.copy()
            
            if sim_site_var1 == 'Draftkings':
                flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:6].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                cpt_own_div = 600
            elif sim_site_var1 == 'Fanduel':
                flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:5].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                cpt_own_div = 500
            flex_working['Freq'] = flex_working['Freq'].astype(int)
            flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
            if sim_site_var1 == 'Draftkings':
                flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
            elif sim_site_var1 == 'Fanduel':
                flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
            flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['cpt_Own_map']) / 100)
            flex_working['Exposure'] = flex_working['Freq']/(1000)
            flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
            flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
            st.session_state.flex_freq = flex_working.copy()

            if sim_site_var1 == 'Draftkings':
                team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            team_working['Freq'] = team_working['Freq'].astype(int)
            team_working['Exposure'] = team_working['Freq']/(1000)
            st.session_state.team_freq = team_working.copy()

            if sim_site_var1 == 'Draftkings':
                stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,10:11].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,9:10].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            stack_working['Freq'] = stack_working['Freq'].astype(int)
            stack_working['Exposure'] = stack_working['Freq']/(1000)
            st.session_state.stack_freq = stack_working.copy()
            
        with st.container():
            if st.button("Reset Sim", key='reset_sim'):
                for key in st.session_state.keys():
                    del st.session_state[key]
            if 'player_freq' in st.session_state: 
                player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
                if player_split_var2 == 'Specific Players':
                          find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
                elif player_split_var2 == 'Full Players':
                          find_var2 = st.session_state.player_freq.Player.values.tolist()
    
                if player_split_var2 == 'Specific Players':
                          st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
                if player_split_var2 == 'Full Players':
                          st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
            if 'Sim_Winner_Display' in st.session_state:
                st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
            if 'Sim_Winner_Export' in st.session_state:
                st.download_button(
                    label="Export Full Frame",
                    data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
                    file_name='NFL_SD_consim_export.csv',
                    mime='text/csv',
                )  
                
        with st.container():
            tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures', 'Team Exposures'])
            with tab1:
                if 'player_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.player_freq.to_csv().encode('utf-8'),
                        file_name='player_freq_export.csv',
                        mime='text/csv',
                        key='overall'
                    )
            with tab2:
                if 'sp_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.sp_freq.to_csv().encode('utf-8'),
                        file_name='cpt_freq.csv',
                        mime='text/csv',
                        key='sp'
                    )
            with tab3:
                if 'flex_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.flex_freq.to_csv().encode('utf-8'),
                        file_name='flex_freq.csv',
                        mime='text/csv',
                        key='flex'
                    )
            with tab4:
                if 'team_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.team_freq.to_csv().encode('utf-8'),
                        file_name='team_freq.csv',
                        mime='text/csv',
                        key='team'
                    )