|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Random policy on an environment.""" |
|
|
|
import tensorflow as tf |
|
import numpy as np |
|
import random |
|
|
|
from environments import create_maze_env |
|
|
|
app = tf.app |
|
flags = tf.flags |
|
logging = tf.logging |
|
|
|
FLAGS = flags.FLAGS |
|
|
|
flags.DEFINE_string('env', 'AntMaze', 'environment name: AntMaze, AntPush, or AntFall') |
|
flags.DEFINE_integer('episode_length', 500, 'episode length') |
|
flags.DEFINE_integer('num_episodes', 50, 'number of episodes') |
|
|
|
|
|
def get_goal_sample_fn(env_name): |
|
if env_name == 'AntMaze': |
|
|
|
|
|
|
|
|
|
return lambda: np.random.uniform((-4, -4), (20, 20)) |
|
elif env_name == 'AntPush': |
|
return lambda: np.array([0., 19.]) |
|
elif env_name == 'AntFall': |
|
return lambda: np.array([0., 27., 4.5]) |
|
else: |
|
assert False, 'Unknown env' |
|
|
|
|
|
def get_reward_fn(env_name): |
|
if env_name == 'AntMaze': |
|
return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5 |
|
elif env_name == 'AntPush': |
|
return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5 |
|
elif env_name == 'AntFall': |
|
return lambda obs, goal: -np.sum(np.square(obs[:3] - goal)) ** 0.5 |
|
else: |
|
assert False, 'Unknown env' |
|
|
|
|
|
def success_fn(last_reward): |
|
return last_reward > -5.0 |
|
|
|
|
|
class EnvWithGoal(object): |
|
|
|
def __init__(self, base_env, env_name): |
|
self.base_env = base_env |
|
self.goal_sample_fn = get_goal_sample_fn(env_name) |
|
self.reward_fn = get_reward_fn(env_name) |
|
self.goal = None |
|
|
|
def reset(self): |
|
obs = self.base_env.reset() |
|
self.goal = self.goal_sample_fn() |
|
return np.concatenate([obs, self.goal]) |
|
|
|
def step(self, a): |
|
obs, _, done, info = self.base_env.step(a) |
|
reward = self.reward_fn(obs, self.goal) |
|
return np.concatenate([obs, self.goal]), reward, done, info |
|
|
|
@property |
|
def action_space(self): |
|
return self.base_env.action_space |
|
|
|
|
|
def run_environment(env_name, episode_length, num_episodes): |
|
env = EnvWithGoal( |
|
create_maze_env.create_maze_env(env_name).gym, |
|
env_name) |
|
|
|
def action_fn(obs): |
|
action_space = env.action_space |
|
action_space_mean = (action_space.low + action_space.high) / 2.0 |
|
action_space_magn = (action_space.high - action_space.low) / 2.0 |
|
random_action = (action_space_mean + |
|
action_space_magn * |
|
np.random.uniform(low=-1.0, high=1.0, |
|
size=action_space.shape)) |
|
return random_action |
|
|
|
rewards = [] |
|
successes = [] |
|
for ep in range(num_episodes): |
|
rewards.append(0.0) |
|
successes.append(False) |
|
obs = env.reset() |
|
for _ in range(episode_length): |
|
obs, reward, done, _ = env.step(action_fn(obs)) |
|
rewards[-1] += reward |
|
successes[-1] = success_fn(reward) |
|
if done: |
|
break |
|
logging.info('Episode %d reward: %.2f, Success: %d', ep + 1, rewards[-1], successes[-1]) |
|
|
|
logging.info('Average Reward over %d episodes: %.2f', |
|
num_episodes, np.mean(rewards)) |
|
logging.info('Average Success over %d episodes: %.2f', |
|
num_episodes, np.mean(successes)) |
|
|
|
|
|
def main(unused_argv): |
|
logging.set_verbosity(logging.INFO) |
|
run_environment(FLAGS.env, FLAGS.episode_length, FLAGS.num_episodes) |
|
|
|
|
|
if __name__ == '__main__': |
|
app.run() |
|
|