Spaces:
Sleeping
Sleeping
File size: 2,378 Bytes
efbf74e c1169cd efbf74e 3c927bc efbf74e 3c927bc efbf74e 3c927bc efbf74e 3c927bc efbf74e 3c927bc efbf74e 3c927bc efbf74e 3c927bc b756fab efbf74e 3c927bc a35a773 efbf74e 3c927bc b756fab efbf74e 3c927bc b756fab efbf74e 3c927bc b756fab efbf74e 3c927bc de61903 efbf74e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import tensorflow as tf
import cv2
import numpy as np
def classify(img):
im = img
lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
im = cv2.resize(im,(52,52))
model = tf.keras.models.load_model("all-in-one.h5",compile=False)
result = model.predict(np.array([im]))
a = np.argmax(result)
c=""
if a==0:
return "Enter the medical Image"
if a==1:
c = bone_net(im)
if a==2:
c = brain_net(im)
if a==3:
c = Eye_net(im)
if a==4:
c = kidney_net(im)
if a==5:
c = chest_net(im)
if a==6:
c = skin_net(im)
return c
def bone_net(img):
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("Fracture.h5",compile=False)
result = model.predict(np.array([img]))
op=""
if result[0]<0.5:
op="Fracture"
else:
op="Normal"
return op
def brain_net(img):
lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
# img = cv2.resize(img,(52,52))
model = tf.keras.models.load_model("brain.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def chest_net(img):
lt = ['PNEUMONIA', 'NORMAL']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("chest.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def Eye_net(img):
lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("eye.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def kidney_net(img):
lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("kidney.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def skin_net(img):
lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("skin_cancer.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans] |