File size: 6,222 Bytes
1649416
834c71a
8d35da0
 
80e4cb4
8d35da0
3ee65d3
 
90bf4dc
834c71a
9ce0b96
56ec544
3ee65d3
 
834c71a
 
8d35da0
 
 
9ce0b96
 
 
 
 
 
 
 
 
 
 
 
 
8d35da0
9ce0b96
 
 
 
 
8d35da0
834c71a
e4b3db1
834c71a
 
e4b3db1
834c71a
 
 
 
 
 
 
e4b3db1
834c71a
 
e4b3db1
834c71a
 
 
 
2b77a1d
8d35da0
90bf4dc
be68f20
 
8d35da0
9ce0b96
7adb197
834c71a
90bf4dc
7adb197
7e6ed60
4c56b3d
248e7bd
 
 
3feab75
248e7bd
3feab75
7e6ed60
248e7bd
7e6ed60
248e7bd
7adb197
 
 
 
 
 
 
 
8d35da0
 
 
80e4cb4
8d35da0
 
be68f20
7adb197
90bf4dc
7adb197
834c71a
eda6735
9ce0b96
834c71a
 
8d35da0
9ce0b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d35da0
 
 
 
 
 
 
 
9ce0b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d35da0
9ce0b96
 
 
 
 
 
8d35da0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import io
import pickle
import PyPDF2
from docx import Document
import numpy as np
from nltk.tokenize import sent_tokenize
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
import gradio as gr
import torch

# Download NLTK punkt tokenizer if not already downloaded
import nltk
nltk.download('punkt')

# Initialize Sentence Transformer model for embeddings
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Initialize Hugging Face API token
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
    raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")

# Initialize RAG models from Hugging Face
generator_model_name = "facebook/bart-base"
retriever_model_name = "facebook/bart-base"
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)

# Initialize FAISS index using LangChain
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings

hf_embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
faiss_index = FAISS(embedding_function=hf_embeddings)

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_data):
    text = ""
    try:
        pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data))
        for page in pdf_reader.pages:
            text += page.extract_text()
    except Exception as e:
        print(f"Error extracting text from PDF: {e}")
    return text

# Function to extract text from a Word document
def extract_text_from_docx(docx_data):
    text = ""
    try:
        doc = Document(io.BytesIO(docx_data))
        text = "\n".join([para.text for para in doc.paragraphs])
    except Exception as e:
        print(f"Error extracting text from DOCX: {e}")
    return text

# Function to preprocess text into sentences
def preprocess_text(text):
    sentences = sent_tokenize(text)
    return sentences

# Function to handle file uploads and update FAISS index
def upload_files(files):
    global faiss_index
    try:
        for file in files:
            file_name = file.name
            
            # Extract file content
            if isinstance(file, str):
                file_content = file
            else:
                file_content = file.read().decode("utf-8")

            if file_name.endswith('.pdf'):
                text = extract_text_from_pdf(file_content.encode())
            elif file_name.endswith('.docx'):
                text = extract_text_from_docx(file_content.encode())
            else:
                return {"error": "Unsupported file format"}

            # Preprocess text
            sentences = preprocess_text(text)

            # Encode sentences and add to FAISS index
            embeddings = embedding_model.encode(sentences)
            if faiss_index is not None:
                for embedding in embeddings:
                    faiss_index.add(np.expand_dims(embedding, axis=0))

        # Save the updated index (if needed)
        # Add your logic here to save the FAISS index if you're using persistence

        return {"message": "Files processed successfully"}
    except Exception as e:
        print(f"Error processing files: {e}")
        return {"error": str(e)}  # Provide informative error message

# Function to process queries using RAG model
def process_and_query(state, question):
    if question:
        try:
            # Search the FAISS index for similar passages
            question_embedding = embedding_model.encode([question])
            D, I = faiss_index.search(np.array(question_embedding), k=5)
            retrieved_passages = [faiss_index.index_to_text(i) for i in I[0]]

            # Use generator model to generate response based on question and retrieved passages
            prompt_template = """
            Answer the question as detailed as possible from the provided context,
            make sure to provide all the details, if the answer is not in
            provided context just say, "answer is not available in the context",
            don't provide the wrong answer
            Context:\n{context}\n
            Question:\n{question}\n
            Answer:
            """
            combined_input = prompt_template.format(context=' '.join(retrieved_passages), question=question)
            inputs = generator_tokenizer(combined_input, return_tensors="pt")
            with torch.no_grad():
                generator_outputs = generator.generate(**inputs)
                generated_text = generator_tokenizer.decode(generator_outputs[0], skip_special_tokens=True)

            # Update conversation history
            state.append({"question": question, "answer": generated_text})

            return {"message": generated_text, "conversation": state}
        except Exception as e:
            print(f"Error processing query: {e}")
            return {"error": str(e)}
    else:
        return {"error": "No question provided"}

# Define the Gradio interface
def main():
    upload_tab = gr.Interface(
        fn=upload_files,
        inputs=gr.inputs.File(label="Upload PDF or DOCX files", multiple=True),
        outputs=gr.outputs.Text(label="Upload Status", default="No file uploaded yet", type="textbox"),
        live=True,
        capture_session=True
    )

    query_tab = gr.Interface(
        fn=process_and_query,
        inputs=gr.inputs.Textbox(label="Enter your query"),
        outputs=gr.outputs.Textbox(label="Query Response", default="No query processed yet", type="textbox"),
        live=True,
        capture_session=True
    )

    gr.Interface(
        fn=None,
        inputs=[
            gr.Interface.Tab("Upload Files", upload_tab),
            gr.Interface.Tab("Query", query_tab)
        ],
        outputs=gr.outputs.Textbox(label="Output", default="Output will be shown here", type="textbox"),
        live=True,
        capture_session=True
    ).launch()

if __name__ == "__main__":
    main()