Spaces:
Runtime error
Runtime error
File size: 2,863 Bytes
409f81b 2c02a9e 409f81b 84f3457 8ceb607 47ecda0 f812db9 2c02a9e f812db9 2c02a9e f812db9 2c02a9e f7133fb 2c02a9e f7133fb 409f81b f812db9 409f81b f812db9 409f81b 2c02a9e 47ecda0 f812db9 409f81b f812db9 409f81b 261cad3 ba470cd f812db9 f7133fb ba470cd 409f81b 2c02a9e 8ceb607 6e6d28c 70fd172 f7133fb f812db9 ba470cd f812db9 f7133fb 6e6d28c ba470cd f7133fb f812db9 2c02a9e 261cad3 ba470cd 6e6d28c 70fd172 47ecda0 0385c04 84f3457 409f81b d7100c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import os
import fitz
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
import gradio as gr
from typing import List
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from nltk.tokenize import sent_tokenize # Import for sentence segmentation
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Function to extract text from a PDF file (same as before)
def extract_text_from_pdf(pdf_path):
# ...
# Function to extract text from a Word document (fixed indentation)
def extract_text_from_docx(docx_path):
"""Extracts text from a Word document."""
text = ""
try:
doc = Document(docx_path)
text = "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
print(f"Error extracting text from DOCX: {e}")
return text
# Initialize the embedding model (same as before)
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Hugging Face API token (same as before)
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
# Define RAG models (replace with your chosen models)
generator_model_name = "facebook/bart-base"
retriever_model_name = "facebook/bart-base" # Can be the same as generator
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
# Load or create FAISS index (same as before)
index_path = "faiss_index.pkl"
document_texts_path = "document_texts.pkl"
document_texts = []
# ... (rest of the FAISS index loading logic)
def preprocess_text(text):
# ... (text preprocessing logic, e.g., sentence segmentation and optional stop word removal)
def upload_files(files):
global index, document_texts
try:
for file_path in files:
if file_path.endswith('.pdf'):
text = extract_text_from_pdf(file_path)
elif file_path.endswith('.docx'):
text = extract_text_from_docx(file_path)
else:
return "Unsupported file format"
# Preprocess text (call the new function)
sentences = preprocess_text(text)
# Encode sentences and add to FAISS index
embeddings = embedding_model.encode(sentences)
index.add(np.array(embeddings))
# Save the updated index and documents
return "Files processed successfully"
except Exception as e:
print(
|