File size: 2,180 Bytes
e38bf4d
d243d0e
8820453
 
d243d0e
aec5ec6
8820453
 
 
 
 
 
 
014d1cd
 
d243d0e
b13bb13
d243d0e
 
9b319b3
b13bb13
9b319b3
aec5ec6
b13bb13
 
 
 
 
8820453
aec5ec6
b13bb13
 
 
 
d243d0e
b13bb13
d243d0e
a655cfe
 
 
 
d243d0e
aec5ec6
d243d0e
8820453
 
 
 
 
 
 
b13bb13
 
8820453
f51b0f2
8820453
a655cfe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import gradio as gr
from skimage import color
from sklearn.decomposition import TruncatedSVD
from PIL import Image

def truncated_svd_compress(image, k):
    """Compress the image using Truncated SVD by keeping only the top k singular values."""
    svd = TruncatedSVD(n_components=k)
    U = svd.fit_transform(image)
    S = svd.singular_values_
    Vt = svd.components_
    compressed_image = np.dot(U, np.dot(np.diag(S), Vt))
    return compressed_image

def process_image(image, k):
    """Process the uploaded image, compress it using Truncated SVD, and return the result."""
    # Convert PIL Image to NumPy array
    image_np = np.array(image)
    
    # Convert to grayscale for SVD
    gray_image = color.rgb2gray(image_np)
    
    # Ensure the image is 2D for SVD
    if len(gray_image.shape) == 3:
        gray_image = gray_image[:, :, 0]
    
    # Compress the image using Truncated SVD
    compressed_image = truncated_svd_compress(gray_image, k)
    
    # Normalize the compressed image to the range [0, 255] and convert to uint8
    compressed_image = np.clip(compressed_image, 0, 1)  # Ensure values are within [0, 1]
    compressed_image = (compressed_image * 255).astype(np.uint8)
    
    # Convert compressed image back to PIL Image for Gradio output
    compressed_image_pil = Image.fromarray(compressed_image)
    
    # Ensure the PIL Image is in RGB mode for consistent display
    if compressed_image_pil.mode != 'RGB':
        compressed_image_pil = compressed_image_pil.convert('RGB')
    
    return compressed_image_pil

# Gradio interface
gr_interface = gr.Interface(
    fn=process_image,  # Image processing function
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Slider(1, 100, step=1, value=50, label="Compression Rank")  # Compression rank slider
    ],
    outputs=gr.Image(type="pil", label="Compressed Image"),
    title="Interactive Image Compression using Truncated SVD",
    description="Upload an image and adjust the compression rank to see the compressed version. The app compresses the image while retaining important features."
)

# Launch the Gradio interface
gr_interface.launch()