File size: 4,811 Bytes
73c9569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377be67
 
73c9569
 
 
 
377be67
 
 
 
 
73c9569
 
 
 
377be67
 
73c9569
8c7f62e
377be67
 
 
73c9569
377be67
 
 
 
78eb20d
b1318a8
73c9569
377be67
 
 
 
 
 
 
 
73c9569
377be67
73c9569
 
377be67
 
 
 
 
 
e9b987a
 
377be67
e9b987a
 
377be67
e9b987a
 
377be67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b987a
73c9569
 
 
377be67
 
 
 
 
73c9569
5347e77
377be67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c9569
377be67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from datasets import load_dataset
dataset = load_dataset("Namitg02/Test")
print(dataset)

from langchain.docstore.document import Document as LangchainDocument
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
docs = splitter.create_documents(str(dataset))


from langchain_community.embeddings import HuggingFaceEmbeddings
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

from langchain_community.vectorstores import Chroma
persist_directory = 'docs/chroma/'

vectordb = Chroma.from_documents(
    documents=docs,
    embedding=embedding_model,
    persist_directory=persist_directory
)



retriever = vectordb.as_retriever(
    search_type="similarity", search_kwargs={"k": 2}
)


from langchain.prompts import PromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory(
    memory_key="chat_history",
    return_messages=True
)

from transformers import pipeline
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.messages import SystemMessage
from langchain_core.prompts import HumanMessagePromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
import time


print("check1")
question = "How can I reverse Diabetes?"

SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""

print("check2")



from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread

llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
tokenizer = AutoTokenizer.from_pretrained(llm_model,token=token)
model = AutoModelForCausalLM.from_pretrained(llm_model,token=token)
#pipe = pipeline(model = llm_model, tokenizer = tokenizer, task = "text-generation", temperature=0.5)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]



def search(query: str, k: int = 3 ):
    """a function that embeds a new query and returns the most probable results"""
    embedded_query = embedding_model.encode(query) # embed new query
    scores, retrieved_examples = data.get_nearest_examples( # retrieve results
        "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
        k=k # get only top k results
    )
    return scores, retrieved_examples

print("check2A")


def format_prompt(prompt,retrieved_documents,k):
    """using the retrieved documents we will prompt the model to generate our responses"""
    PROMPT = f"Question:{prompt}\nContext:"
    for idx in range(k) :
        PROMPT+= f"{retrieved_documents['text'][idx]}\n"
    return PROMPT


print("check3")


print("check3A")


def talk(prompt,history):
    k = 1 # number of retrieved documents
    scores , retrieved_documents = search(prompt, k)
    formatted_prompt = format_prompt(prompt,retrieved_documents,k)
    formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
    messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
    # tell the model to generate
    input_ids = tokenizer.apply_chat_template(
      messages,
      add_generation_prompt=True,
      return_tensors="pt"
    ).to(model.device)
    outputs = model.generate(
      input_ids,
      max_new_tokens=1024,
      eos_token_id=terminators,
      do_sample=True,
      temperature=0.6,
      top_p=0.9,
    )
    streamer = TextIteratorStreamer(
            tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
        )
    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        top_p=0.95,
        temperature=0.75,
        eos_token_id=terminators,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()


outputs = []
    for text in streamer:
        outputs.append(text)
        print(outputs)
        yield "".join(outputs)


print("check3B")


TITLE = "AI Copilot for Diabetes Patients"

DESCRIPTION = ""

import gradio as gr

demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["what is Diabetes? "]],
    title=TITLE,
    description=DESCRIPTION,
    
)
demo.launch(debug=True)

print("check4")