|
--- |
|
title: ECE |
|
datasets: |
|
- "null" |
|
tags: |
|
- evaluate |
|
- metric |
|
description: "Expected calibration error (ECE)" |
|
sdk: gradio |
|
sdk_version: 3.19.1 |
|
app_file: app.py |
|
pinned: false |
|
--- |
|
|
|
# Metric Card for ECE |
|
|
|
## Metric Description |
|
|
|
This metrics computes the expected calibration error (ECE). |
|
It directly calls the torchmetrics package: |
|
https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html |
|
|
|
## How to Use |
|
|
|
### Inputs |
|
*List all input arguments in the format below* |
|
- **predictions** *(float32): predictions (after softmax). They must have a shape (N,C,...) if multiclass, or (N,...) if binary.* |
|
- **references** *(int64): reference for each prediction, with a shape (N,...).* |
|
|
|
### Output Values |
|
|
|
ECE as float. |
|
|
|
### Examples |
|
|
|
```Python |
|
ce = evaluate.load("Natooz/ece") |
|
results = ece.compute( |
|
references=np.array([[0.25, 0.20, 0.55], |
|
[0.55, 0.05, 0.40], |
|
[0.10, 0.30, 0.60], |
|
[0.90, 0.05, 0.05]]), |
|
predictions=np.array(), |
|
num_classes=3, |
|
n_bins=3, |
|
norm="l1", |
|
) |
|
print(results) |
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{NEURIPS2019_f8c0c968, |
|
author = {Kumar, Ananya and Liang, Percy S and Ma, Tengyu}, |
|
booktitle = {Advances in Neural Information Processing Systems}, |
|
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett}, |
|
publisher = {Curran Associates, Inc.}, |
|
title = {Verified Uncertainty Calibration}, |
|
url = {https://papers.nips.cc/paper_files/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html}, |
|
volume = {32}, |
|
year = {2019} |
|
} |
|
``` |
|
|