Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from datetime import datetime | |
# hyperparameters | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
NUM_HEAD = 6 | |
NUM_EMBED = NUM_HEAD * 128 | |
NUM_LAYER = 8 | |
DROPOUT = 0.3 | |
MAX_SEQ_LEN = 4096 | |
def encode(text_seq: str, tokenizer: any) -> torch.Tensor: | |
""" | |
Function to encode input text using a pre-trained tokenizer and vectorized lookups | |
""" | |
# tokenize the input text | |
tokens = tokenizer.tokenize(text_seq) | |
# convert the tokens to their corresponding ids | |
token_indices = tokenizer.convert_tokens_to_ids(tokens) | |
token_indices = torch.tensor(token_indices, dtype=torch.long) | |
return token_indices | |
def decode(enc_sec: torch.Tensor, tokenizer: any) -> str: | |
""" | |
Function to decode a sequence of token indices back to a string | |
""" | |
# convert the indices to a list | |
enc_sec = enc_sec.tolist() | |
# decode the indices to a string | |
text = tokenizer.decode(enc_sec) | |
return text | |