Spaces:
Sleeping
Sleeping
File size: 10,170 Bytes
940c98a 5dff670 052e52f 5dff670 979aaae 96fe0c0 979aaae f4738b1 940c98a 5dff670 940c98a aefdf99 5dff670 aefdf99 5dff670 f4738b1 5dff670 f4738b1 5dff670 f4738b1 5dff670 f4738b1 5dff670 f4738b1 5dff670 f85bc8f 5dff670 f85bc8f 5dff670 f85bc8f 5dff670 f85bc8f 5dff670 940c98a 5dff670 940c98a 5dff670 f4738b1 5dff670 f4738b1 5dff670 f4738b1 5dff670 f4738b1 5dff670 f4738b1 5dff670 907d1ed 5dff670 907d1ed 5dff670 f4738b1 5dff670 907d1ed 5dff670 0fd9053 558f5d1 052e52f 558f5d1 5dff670 f4738b1 558f5d1 a8f0234 5dff670 1d239e0 5dff670 558f5d1 979aaae 558f5d1 5dff670 c36a14b fa7d405 5dff670 979aaae 5dff670 979aaae 5dff670 979aaae 5dff670 979aaae 5dff670 979aaae d3d3acb 05b09c6 691414c 1a1cf31 c36a14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from flask import Flask, request
from twilio.twiml.messaging_response import MessagingResponse
from twilio.rest import Client
import os
import shutil
from bs4 import BeautifulSoup
import requests
from requests.auth import HTTPBasicAuth
from PIL import Image
from io import BytesIO
import pandas as pd
from urllib.parse import urlparse
from pypdf import PdfReader
from ai71 import AI71
import uuid
from inference_sdk import InferenceHTTPClient
import base64
app = Flask(__name__)
UPLOAD_FOLDER = '/code/uploads'
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
class ConversationBufferMemory:
def __init__(self, max_size):
self.memory = []
self.max_size = max_size
def add_to_memory(self, interaction):
self.memory.append(interaction)
if len(self.memory) > self.max_size:
self.memory.pop(0)
def get_memory(self):
return self.memory
conversation_memory = ConversationBufferMemory(max_size=2)
account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
client = Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
AI71_API_KEY = os.environ.get('AI71_API_KEY')
def generate_response(query, chat_history):
response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."},
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
return response.replace("###", '').replace('\nUser:', '')
def predict_pest(filepath):
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
return result['predictions'][0]
def predict_disease(filepath):
CLIENT = InferenceHTTPClient(
api_url="https://classify.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
return result['predicted_classes'][0]
def convert_img(url, account_sid, auth_token):
try:
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status()
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1]
filename = f"downloaded_media_{media_id}"
media_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(media_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {media_filepath}")
with open(media_filepath, 'rb') as img_file:
image = Image.open(img_file)
converted_filename = f"image.jpg"
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
image.convert('RGB').save(converted_filepath, 'JPEG')
return converted_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def get_weather(city):
city = city.strip().replace(' ', '+')
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
soup = BeautifulSoup(r.text, 'html.parser')
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
return temperature
from zenrows import ZenRowsClient
Zenrow_api = os.environ.get('Zenrow_api')
zenrows_client = ZenRowsClient(Zenrow_api)
def get_rates():
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
response = zenrows_client.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
rows = soup.select('table tbody tr')
data = {}
for row in rows:
columns = row.find_all('td')
if len(columns) >= 2:
commodity = columns[0].get_text(strip=True)
price = columns[1].get_text(strip=True)
if '₹' in price:
data[commodity] = price
return str(data) + " These are the prices for 1 kg"
def get_news():
news = []
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
response = zenrows_client.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
headlines = soup.find_all("div", class_="eachStory")
for story in headlines:
headline = story.find('h3').text.strip()
news.append(headline)
return news
def download_and_save_as_txt(url, account_sid, auth_token):
try:
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status()
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1]
filename = f"pdf_file.pdf"
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(txt_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {txt_filepath}")
return txt_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def download_file(url, extension):
try:
response = requests.get(url)
response.raise_for_status()
filename = f"{uuid.uuid4()}{extension}"
file_path = os.path.join(UPLOAD_FOLDER, filename)
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"File downloaded and saved as {file_path}")
return file_path
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
return None
@app.route('/whatsapp', methods=['POST'])
def whatsapp_webhook():
incoming_msg = request.values.get('Body', '').lower()
sender = request.values.get('From')
num_media = int(request.values.get('NumMedia', 0))
chat_history = conversation_memory.get_memory()
if num_media > 0:
media_url = request.values.get('MediaUrl0')
content_type = request.values.get('MediaContentType0')
if content_type.startswith('image/'):
# Handle image processing (disease/pest detection)
filepath = convert_img(media_url, account_sid, auth_token)
response_text = handle_image(filepath)
else:
# Handle PDF processing
filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
response_text = process_and_query_pdf(filepath)
elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or (
'temperature' in incoming_msg.lower()):
response_text = get_weather(incoming_msg.lower())
elif 'bookkeeping' in incoming_msg:
response_text = "Please provide the details you'd like to record."
elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or (
'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()):
rates = get_rates()
response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history)
elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()):
news = get_news()
response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history)
else:
response_text = generate_response(incoming_msg, chat_history)
conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text})
send_message(sender, response_text)
return '', 204
def handle_image(filepath):
try:
disease = predict_disease(filepath)
except:
disease = None
try:
pest = predict_pest(filepath)
except:
pest = None
if disease:
response_text = f"Detected disease: {disease}"
disease_info = generate_response(f"Provide brief information about {disease} in agriculture", "")
response_text += "\n" + disease_info
elif pest:
response_text = f"Detected pest: {pest}"
pest_info = generate_response(f"Provide brief information about {pest} in agriculture", "")
response_text += "\n" + pest_info
else:
response_text = "Sorry, I couldn't detect any disease or pest. Please try another image."
return response_text
def process_and_query_pdf(filepath):
# Read and process the PDF
reader = PdfReader(filepath)
text = ''
for page in reader.pages:
text += page.extract_text()
if not text:
return "Sorry, the PDF content could not be extracted."
# Generate response based on extracted PDF content
response_text = generate_response(f"The PDF content is {text}", "")
return response_text
def send_message(recipient, message):
client.messages.create(
body=message,
from_=from_whatsapp_number,
to=recipient
)
def send_initial_message(to_number):
send_message(
f'whatsapp:{to_number}',
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
)
if __name__ == "__main__":
send_initial_message('919080522395')
send_initial_message('916382792828')
app.run(host='0.0.0.0', port=7860) |