NickoSELI's picture
Create app.py
a5dda79 verified
raw
history blame contribute delete
840 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor
# Load the model and processor from HF Hub
model_name = "NickoSELI/blip2-indian-food-captioning-private-checkopt-mock1"
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=True)
# Define a prediction function
def predict(image):
inputs = processor(images=image, return_tensors="pt")
outputs = model.generate(**inputs)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
# Create a Gradio interface
interface = gr.Interface(
fn=predict,
inputs=gr.inputs.Image(type="pil"),
outputs="text",
title="Indian Food Captioning Model"
)
# Launch the interface
if __name__ == "__main__":
interface.launch()