File size: 12,774 Bytes
769aa5e
 
 
 
 
b408c43
 
769aa5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c687f3
330d5fc
769aa5e
10a4924
769aa5e
 
 
 
 
 
 
 
 
 
 
10a4924
769aa5e
fd9b6a3
cf35402
 
 
ef1a1ae
 
 
 
 
 
 
 
fd9b6a3
9b1ac09
 
 
ef1a1ae
 
 
 
0d18e86
9b1ac09
769aa5e
 
9b1ac09
 
 
 
0d18e86
769aa5e
 
ef1a1ae
 
 
 
769aa5e
 
 
07c4a28
 
 
 
e2bfee1
07c4a28
e2bfee1
 
 
 
07c4a28
 
 
 
38332c9
 
07c4a28
fb79d54
e2bfee1
 
9b1ac09
 
 
e2bfee1
 
9b1ac09
 
 
07c4a28
e2bfee1
9b1ac09
 
 
 
e2bfee1
38332c9
 
07c4a28
fb79d54
e2bfee1
 
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
 
07c4a28
e2bfee1
9b1ac09
 
 
 
 
e2bfee1
 
9b1ac09
 
 
e2bfee1
38332c9
e2bfee1
07c4a28
fb79d54
e2bfee1
 
9b1ac09
 
 
07c4a28
e2bfee1
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
e2bfee1
38332c9
e2bfee1
07c4a28
fb79d54
e2bfee1
 
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
 
07c4a28
e2bfee1
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
e2bfee1
38332c9
e2bfee1
07c4a28
fb79d54
e2bfee1
 
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
07c4a28
e2bfee1
9b1ac09
 
 
 
e2bfee1
38332c9
 
07c4a28
fb79d54
e2bfee1
 
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
 
07c4a28
e2bfee1
9b1ac09
 
 
 
e2bfee1
 
9b1ac09
 
 
 
e2bfee1
 
 
769aa5e
 
 
 
73ae154
 
 
769aa5e
 
 
 
9c97ffe
769aa5e
9c97ffe
 
 
 
769aa5e
 
9c97ffe
 
 
 
 
769aa5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e7862
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

import streamlit as st
from PIL import Image
from streamlit_lottie import st_lottie
import json
from streamlit_option_menu import option_menu
from projects import display_projects

#setting layout to wide
st.set_page_config(layout="wide")
# Load CSS for styling with a minimalist grey background
with open("style.css") as f:
    css_content = f.read()
    css_content += '''
    body {
        background-color: #f0f2f6;
    }
    '''
    st.markdown('<style>{}</style>'.format(css_content), unsafe_allow_html=True)

def load_lottiefile(filepath: str):
    with open(filepath, "r") as file:
        return json.load(file)

def display_header():
    st.write('''
    # Nihar Palem
    ##### 
    ''')
    # Assuming you have a Lottie animation to display
    lottie_animation = load_lottiefile("bio.json")
    st_lottie(lottie_animation, height=300, key="header_animation")

def display_summary():
    #st.markdown('## Summary', unsafe_allow_html=True)
    st.markdown("""Hello! This is Nihar Palem. I'm originally from Hyderabad and currently residing in the Silicon Valley Bay Area, San Jose. I'm a Graduate with Master's degree in Data Analytics (Applied Data Science) from San Jose State University. In this portfolio, you can explore my academic background, work experience, and projects in the data science field. You'll also find links to my skills, other hobbies, and certifications.""")    

def display_education():
    st.markdown('## Education')
    st.write("""
    - **Masters In Data Analytics**, *San Jose State University*, USA (2023-2024)
      - Courses: Data Mining, Deep Learning, Big Data Technologies, Data Visualization, Machine Learning, Database Management Systems
      - Achievements: 
        - A Grade in Deep Learning
    - **Bachelor of Technology (B.Tech) in Electrical and Electronics Engineering (EEE)**, *Sreenidhi Institute of Science and Technology (SNIST)*, Hyderabad (2015-2019)
      - Activities: 
        - Memeber of the Robotics Club:, built line follower and theft-alert detection bots.
        - Member of the college cricket team; won the Hyderabad zone-level tournament
    """)
def display_work_experience():
    st.markdown('## Work Experience')
    st.write("""
    
    **HighBrow Technoloy Inc, San Jose, CA, USA**
    March 2025 - Present
    - **Data Scientist**
        - Conduct fundamental and applied research in multimodal learning, vision-language alignment, and inference optimization.
        - Develop novel methodologies and optimization techniques to enhance inference performance and post-training efficiency.
        - Explore advancements in vision and text alignment to improve model understanding and generation.
        - Investigate data efficiency, model interpretability, robustness, and fairness in vision-language systems.
        - Curate, preprocess, and construct high-quality multimodal datasets for training and benchmarking.
        - Design and implement robust evaluation pipelines, incorporating human-in-the-loop assessments, zero-shot learning, and adversarial testing.
        - Improve dataset quality and diversity to mitigate bias and enhance fairness in vision-language models (VLMs).
        - Collaborate with AI engineers, product teams, and academic researchers to align research initiatives with business objectives.
    
    **San Jose State University, San Jose, CA, USA**
    August 2024 - December 2024
    - **Teaching Assistant**
        - Mentored 80+ graduate students on data modeling projects, providing feedback on technical documentation
        - Reviewed and debugged student data pipelines, offering solutions for data analysis and ML model challenges
        - Improved student performance, with 75% of mentored students achieving an ’A’ grade
        -Conducted weekly office hours to assist students with complex data science concepts and project implementations
    
    **Bharat Electronics Limited, Hyderabad, India**
    February 2021 - March 2022
    - **Data Analyst**
      - Optimized SQL queries for sales and payroll databases using indexes and CTEs, reducing execution times by 40%
      - Developed and maintained 20+ Tableau dashboards, reducing production costs by 15% and improving sales forecasts by 10%
      - Implemented automated billing checks using SQL procedures, reducing financial discrepancies by 30%
      - Optimized ETL pipelines with staging tables and data quality checks, increasing ingestion efficiency by 25%
      
    **Technical Writer**
    2023-Present
        - Embarked on a new journey in 2023 as a technical writer, sharing insights and developments in data science and data engineering with a growing audience.
        - Authored numerous articles that explore complex topics in an accessible and informative manner, focusing on AI, data science, machine learning and data engineering.
        - This new habit aims to educate and inspire, bridging the gap between technical expertise and practical application in the modern data landscape.
        - Find my work on [Medium](https://medium.com/@nihar-palem) and [Substack](https://niharpalem.substack.com/publish/posts).
    """)

def display_skills():
    st.title('Skills')
    
    # Define tab titles
    tab_titles = [
        "Programming & Core",
        "AI & ML",
        "Data Engineering",
        "Data Architecture",
        "Visualization",
        "Specialized Systems"
    ]
    
    # Create tabs
    tabs = st.tabs(tab_titles)
    
    # Programming & Core Technologies
    with tabs[0]:
        st.subheader("Programming & Core Technologies")
        st.markdown("""
        - **Programming Languages**:
            - Python (Advanced)
            - SQL (Advanced)
            - Shell Scripting
            
        - **Database Systems**: 
            - Relational: MySQL, PostgreSQL
            - NoSQL: MongoDB
            - Data Warehouses: Snowflake, Redshift
            
        - **Development Tools**:
            - Version Control: Git, GitHub
            - Containerization: Docker
            - IDE: VS Code, PyCharm
            - Microsoft Office Suite
        """)
    
    # AI & Machine Learning
    with tabs[1]:
        st.subheader("AI & Machine Learning")
        st.markdown("""
        - **Machine Learning Frameworks**: 
            - PyTorch
            - TensorFlow
            - Scikit-Learn
            - XGBoost, Random Forest, AdaBoost
            
        - **Deep Learning**: 
            - Vision Transformers
            - ResNet Architectures
            - Neural Networks
            - BiLSTM
            
        - **LLM & NLP**: 
            - LLaMA-3 (70B/8B)
            - GPT-3.5
            - Sentence Transformers
            - Advanced Prompt Engineering
            - Multi-agent Architectures
            
        - **Computer Vision**: 
            - MediaPipe
            - OpenCV
            - Image Processing Pipelines
        """)
    
    # Data Engineering & Cloud
    with tabs[2]:
        st.subheader("Data Engineering & Cloud")
        st.markdown("""
        - **Cloud Platforms**: 
            - AWS (Certified)
            - Google Cloud Platform (GCP)
            - Cloud Architecture Design
            
        - **Big Data Technologies**: 
            - Apache Spark (PySpark)
            - Apache Airflow
            - BigQuery
            - Hadoop Ecosystem
            
        - **Data Pipeline Tools**: 
            - ETL/ELT Pipeline Design
            - Workflow Orchestration
            - Concurrent Processing
            - Real-time Data Streaming
            
        - **Infrastructure**:
            - CI/CD Pipelines
            - Infrastructure as Code
            -Kubernetes Basics
        """)
    
    # Data Architecture & Analytics
    with tabs[3]:
        st.subheader("Data Architecture & Analytics")
        st.markdown("""
        - **Data Modeling**: 
            - OLAP/OLTP Systems
            - Star/Snowflake Schema
            - Data Normalization
            - Database Optimization
            
        - **Analytics Techniques**:
            - Streaming Analytics
            - Batch Processing
            - Time Series Analysis
            - Statistical Analysis
            
        - **Data Processing**: 
            - Pandas, NumPy
            - Data Wrangling
            - Feature Engineering
            - Data Quality Assurance
            
        - **Performance Optimization**:
            - Query Optimization
            - Indexing Strategies
            - Caching Mechanisms
        """)
    
    # Visualization & Deployment
    with tabs[4]:
        st.subheader("Visualization & Tools")
        st.markdown("""
        - **Business Intelligence**: 
            - Tableau
            - Power BI
            - Dashboard Design
            - KPI Monitoring
            
        - **Technical Visualization**: 
            - Plotly
            - Seaborn
            - Matplotlib
            - Interactive Charts
            
        - **Deployment & Interface**: 
            - Streamlit
            - Flask
            - Web Development
            
        - **Collaboration Tools**: 
            - JIRA
            - Notion
            - Git Workflow
            - Agile Methodologies
        """)
    
    # Specialized Systems
    with tabs[5]:
        st.subheader("Specialized Systems")
        st.markdown("""
        - **Recommender Systems**: 
            - Hybrid Filtering Techniques
            - Content-Based Filtering
            - Collaborative Filtering
            - Matrix Factorization (SVD)
            
        - **Ensemble Methods**: 
            - Multi-model Consensus Systems
            - Classifier Combinations
            - Voting Systems
            - Stacking Implementations
            
        - **Performance Optimization**: 
            - CUDA Acceleration
            - Parallel Processing
            - Resource Management
            - Scalability Design
            
        - **Custom Solutions**:
            - Natural Language Processing
            - Computer Vision Systems
            - Time Series Forecasting
            - Anomaly Detection
        """)

        
def display_apps():
    st.markdown('## Apps')
    st.markdown("""
- [CNN arch](https://cnn-arch.streamlit.app/)
""")
    st.markdown("""
- [TuNNe](https://huggingface.co/spaces/Niharmahesh/TuNNe)
""")
    
def display_certifications():
    st.markdown('## Certifications')
    
    certifications = [
        {"title": "Python for Data Science and Machine Learning Bootcamp", "issuer": "Udemy", "date": "2023", "skills": "Python, Data Science, Machine Learning"},
        {"title": "HackerRank SQL (Basic)", "issuer": "HackerRank", "date": "2023", "skills": "SQL, Database Management"},
        {"title": "AWS Cloud Practitioner", "issuer": "Udemy", "date": "2023", "skills": "Cloud Computing, AWS Services"},
        {"title": "AWS Certified Cloud Practitioner", "issuer": "Amazon Web Services", "date": "2023", "skills": "Cloud Architecture, AWS Best Practices"}
    ]
    
    for cert in certifications:
        with st.expander(cert["title"]):
            st.write(f"**Issuer:** {cert['issuer']}")
            st.write(f"**Date:** {cert['date']}")
            st.write(f"**Skills:** {cert['skills']}")

def display_social_media():
    st.markdown('## Social Media')
    st.markdown("""
- [LinkedIn](https://www.linkedin.com/in/sai-nihar-1b955a183/)
- [GitHub](https://github.com/niharpalem)
- [Medium](https://medium.com/@nihar-palem)
- [Twitter](https://twitter.com/niharpalem_2497)
- [Email](mailto:[email protected])
""")
menu_items_with_icons = {
    "🎓": display_education,
    "💼": display_work_experience,
    "📁": display_projects,
    "🛠️": display_skills,
    "🌐": display_social_media,
    "🏆": display_certifications,
    "📱": display_apps
}

def main():
    # Initialize session state for selected function
    if 'selected_function' not in st.session_state:
        st.session_state.selected_function = None  # Default to None to not display any section initially

    # Display the header with your name and Lottie animation first
    display_header()
    
    # Display the summary section immediately after the header
    display_summary()

    # Create a row of buttons for each icon in the menu
    cols = st.columns(len(menu_items_with_icons))
    for col, (icon, func) in zip(cols, menu_items_with_icons.items()):
        if col.button(icon):
            # Update the session state to the selected function
            st.session_state.selected_function = func

    # If a function has been selected, call it
    if st.session_state.selected_function is not None:
        st.session_state.selected_function()

if __name__ == "__main__":
    main()