Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import json | |
import base64 | |
from PIL import Image | |
import io | |
# Import smolagents Tool | |
from smolagents import Tool | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the image generation tool | |
# This can be defined globally as it doesn't change per request | |
try: | |
image_generation_tool = Tool.from_space( | |
"black-forest-labs/FLUX.1-schnell", | |
name="image_generator", | |
description="Generates an image from a text prompt. Use it when the user asks to 'generate an image of ...' or 'draw a picture of ...'. The input should be the descriptive prompt for the image." | |
) | |
print("Image generation tool loaded successfully.") | |
except Exception as e: | |
print(f"Error loading image generation tool: {e}") | |
image_generation_tool = None | |
# Function to encode image to base64 | |
def encode_image(image_path): | |
if not image_path: | |
print("No image path provided") | |
return None | |
try: | |
print(f"Encoding image from path: {image_path}") | |
# If it's already a PIL Image | |
if isinstance(image_path, Image.Image): | |
image = image_path | |
else: | |
# Try to open the image file | |
image = Image.open(image_path) | |
# Convert to RGB if image has an alpha channel (RGBA) | |
if image.mode == 'RGBA': | |
image = image.convert('RGB') | |
# Encode to base64 | |
buffered = io.BytesIO() | |
image.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
print("Image encoded successfully") | |
return img_str | |
except Exception as e: | |
print(f"Error encoding image: {e}") | |
return None | |
def respond( | |
message_text, # Changed from 'message' to be explicit about text part | |
image_files, # This will be a list of paths from gr.MultimodalTextbox | |
history: list[list[Any, str | None]], # History can now contain complex user messages | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
provider, | |
custom_api_key, | |
custom_model, | |
model_search_term, | |
selected_model | |
): | |
print(f"Received message text: {message_text}") | |
print(f"Received {len(image_files) if image_files else 0} image files: {image_files}") | |
# print(f"History: {history}") # Can be very verbose | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Selected provider: {provider}") | |
print(f"Custom API Key provided: {bool(custom_api_key.strip())}") | |
print(f"Selected model (custom_model): {custom_model}") | |
print(f"Model search term: {model_search_term}") | |
print(f"Selected model from radio: {selected_model}") | |
# Determine which token to use | |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN | |
if custom_api_key.strip() != "": | |
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication") | |
else: | |
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication") | |
user_text_message_lower = message_text.lower() if message_text else "" | |
image_keywords = ["generate image", "draw a picture of", "create an image of", "make an image of"] | |
is_image_generation_request = any(keyword in user_text_message_lower for keyword in image_keywords) | |
if is_image_generation_request and image_generation_tool: | |
print("Image generation request detected.") | |
image_prompt = message_text | |
for keyword in image_keywords: | |
if keyword in user_text_message_lower: | |
# Find the keyword in the original case-sensitive message text to split | |
keyword_start_index = user_text_message_lower.find(keyword) | |
image_prompt = message_text[keyword_start_index + len(keyword):].strip() | |
break | |
print(f"Extracted image prompt: {image_prompt}") | |
if not image_prompt: | |
yield {"type": "text", "content": "Please provide a description for the image you want to generate."} | |
return | |
try: | |
generated_image_path = image_generation_tool(prompt=image_prompt) | |
print(f"Image generated by tool, path: {generated_image_path}") | |
yield {"type": "image", "path": str(generated_image_path)} # Ensure path is string | |
return | |
except Exception as e: | |
print(f"Error during image generation tool call: {e}") | |
yield {"type": "text", "content": f"Sorry, I couldn't generate the image. Error: {str(e)}"} | |
return | |
elif is_image_generation_request and not image_generation_tool: | |
yield {"type": "text", "content": "Image generation tool is not available or failed to load."} | |
return | |
# If not an image generation request, proceed with text/multimodal LLM call | |
print("Proceeding with LLM call (text or multimodal).") | |
client = InferenceClient(token=token_to_use, provider=provider) | |
print(f"Hugging Face Inference Client initialized with {provider} provider.") | |
if seed == -1: | |
seed = None | |
# Prepare messages for LLM | |
llm_user_content = [] | |
if message_text and message_text.strip(): | |
llm_user_content.append({"type": "text", "text": message_text}) | |
if image_files: # image_files is a list of paths from gr.MultimodalTextbox | |
for img_path in image_files: | |
if img_path: | |
try: | |
encoded_image = encode_image(img_path) # img_path is already a path | |
if encoded_image: | |
llm_user_content.append({ | |
"type": "image_url", | |
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"} | |
}) | |
except Exception as e: | |
print(f"Error encoding image for LLM: {e}") | |
if not llm_user_content: # Should not happen if user() function filters empty messages | |
print("No content for LLM, aborting.") | |
yield {"type": "text", "content": "Please provide some input."} | |
return | |
messages_for_llm = [{"role": "system", "content": system_message}] | |
print("Initial messages array constructed for LLM.") | |
for val in history: # history item is [user_content_list, assistant_response_str_or_dict] | |
user_content_list_hist = val[0] | |
assistant_response_hist = val[1] | |
if user_content_list_hist: | |
# user_content_list_hist is already in the correct format (list of dicts) | |
messages_for_llm.append({"role": "user", "content": user_content_list_hist}) | |
if assistant_response_hist: | |
# Assistant response could be text or an image dict from a previous tool call | |
if isinstance(assistant_response_hist, dict) and assistant_response_hist.get("type") == "image": | |
messages_for_llm.append({"role": "assistant", "content": [{"type": "text", "text": f"Assistant previously displayed image: {assistant_response_hist.get('path')}"}]}) | |
elif isinstance(assistant_response_hist, str): | |
messages_for_llm.append({"role": "assistant", "content": assistant_response_hist}) | |
# Else, if it's a dict but not an image type we understand for history, we might skip or log an error | |
messages_for_llm.append({"role": "user", "content": llm_user_content}) | |
# print(f"Full messages_for_llm: {messages_for_llm}") # Can be very verbose | |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model | |
print(f"Model selected for LLM inference: {model_to_use}") | |
response_text = "" | |
print(f"Sending request to {provider} provider for LLM.") | |
parameters = { | |
"max_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"frequency_penalty": frequency_penalty, | |
} | |
if seed is not None: | |
parameters["seed"] = seed | |
try: | |
stream = client.chat_completion( | |
model=model_to_use, | |
messages=messages_for_llm, | |
stream=True, | |
**parameters | |
) | |
print("Received LLM tokens: ", end="", flush=True) | |
for chunk in stream: | |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0: | |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'): | |
token_text = chunk.choices[0].delta.content | |
if token_text: | |
print(token_text, end="", flush=True) | |
response_text += token_text | |
yield {"type": "text", "content": response_text} | |
print() | |
except Exception as e: | |
print(f"Error during LLM inference: {e}") | |
response_text += f"\nError: {str(e)}" | |
yield {"type": "text", "content": response_text} | |
print("Completed LLM response generation.") | |
def validate_provider(api_key, provider): | |
if not api_key.strip() and provider != "hf-inference": | |
return gr.update(value="hf-inference") | |
return gr.update(value=provider) | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
chatbot = gr.Chatbot( | |
height=600, | |
show_copy_button=True, | |
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs. Try 'generate image of a cat playing chess'.", | |
layout="panel", | |
bubble_full_width=False | |
) | |
print("Chatbot interface created.") | |
msg = gr.MultimodalTextbox( | |
placeholder="Type a message or upload images...", | |
show_label=False, | |
container=False, | |
scale=12, | |
file_types=["image"], | |
file_count="multiple", | |
sources=["upload"] | |
) | |
with gr.Accordion("Settings", open=False): | |
system_message_box = gr.Textbox( | |
value="You are a helpful AI assistant that can understand images and text. If asked to generate an image, respond by saying you will call the image_generator tool.", | |
placeholder="You are a helpful assistant.", | |
label="System Prompt" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens") | |
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") | |
with gr.Column(): | |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"] | |
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider") | |
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.", placeholder="Enter your Hugging Face API token", type="password") | |
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", placeholder="meta-llama/Llama-3.3-70B-Instruct") | |
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1) | |
models_list = [ | |
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", | |
"meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct", | |
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3", | |
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct", | |
"Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", | |
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct", | |
] | |
featured_model_radio = gr.Radio(label="Select a model below", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True) | |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)") | |
chat_history = gr.State([]) | |
def filter_models(search_term): | |
print(f"Filtering models with search term: {search_term}") | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
print(f"Filtered models: {filtered}") | |
return gr.update(choices=filtered) | |
def set_custom_model_from_radio(selected): | |
print(f"Featured model selected: {selected}") | |
return selected | |
def user(user_multimodal_input, history): | |
print(f"User input (raw from gr.MultimodalTextbox): {user_multimodal_input}") | |
text_content = user_multimodal_input.get("text", "").strip() | |
files = user_multimodal_input.get("files", []) # These are temp file paths from Gradio | |
if not text_content and not files: | |
print("Empty input, skipping history append.") | |
# Optionally, could raise gr.Error("Please enter a message or upload an image.") | |
# For now, let's allow the bot to respond if history is not empty, | |
# or do nothing if history is also empty. | |
return history | |
# Prepare content for history: a list of dicts for multimodal display | |
history_user_entry_content = [] | |
if text_content: | |
history_user_entry_content.append({"type": "text", "text": text_content}) | |
for file_path_obj in files: # file_path_obj is a FileData object from Gradio | |
if file_path_obj and hasattr(file_path_obj, 'name') and file_path_obj.name: | |
# Gradio's Chatbot can display images directly from file paths | |
# We store it in a format that `respond` can also understand | |
# The path is temporary, Gradio handles making it accessible for display | |
history_user_entry_content.append({"type": "image_url", "image_url": {"url": file_path_obj.name}}) | |
print(f"Adding image to history entry: {file_path_obj.name}") | |
if history_user_entry_content: | |
history.append([history_user_entry_content, None]) # User part, Bot part (initially None) | |
return history | |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model): | |
if not history or not history[-1][0]: # If no user message or empty user message content | |
print("No user message to process in bot function or user message content is empty.") | |
yield history # Return current history without processing | |
return | |
user_content_list = history[-1][0] # This is now a list of content dicts | |
# Extract text and image file paths from the user_content_list for the `respond` function | |
text_for_respond = "" | |
image_files_for_respond = [] | |
for item in user_content_list: | |
if item["type"] == "text": | |
text_for_respond = item["text"] | |
elif item["type"] == "image_url": | |
image_files_for_respond.append(item["image_url"]["url"]) | |
history[-1][1] = "" # Clear placeholder for bot response / Initialize bot response | |
# Call the respond function which is now a generator | |
for response_chunk in respond( | |
text_for_respond, | |
image_files_for_respond, | |
history[:-1], # Pass previous history | |
system_msg, max_tokens, temperature, top_p, freq_penalty, seed, | |
provider, api_key, custom_model, search_term, selected_model | |
): | |
current_bot_response = history[-1][1] | |
if isinstance(response_chunk, dict): | |
if response_chunk["type"] == "text": | |
# If current bot response is already an image dict, we can't append text. | |
# This indicates a new text response after an image, or just text. | |
if isinstance(current_bot_response, dict) and current_bot_response.get("type") == "image": | |
# This case should ideally not happen if an image is the final response from a tool. | |
# If it does, we might need to start a new bot message in history. | |
# For now, we'll overwrite if the new chunk is text. | |
history[-1][1] = response_chunk["content"] | |
elif isinstance(current_bot_response, str): | |
history[-1][1] = response_chunk["content"] # Accumulate text | |
else: # current_bot_response is likely "" or None | |
history[-1][1] = response_chunk["content"] | |
elif response_chunk["type"] == "image": | |
# Image response from tool. Gradio Chatbot displays this as an image. | |
# The path should be accessible by Gradio. | |
# If there was prior text content for this turn, it's now overwritten by the image. | |
# This means a tool call that produces an image is considered the primary response for that turn. | |
history[-1][1] = {"path": response_chunk["path"], "mime_type": "image/jpeg"} # Assuming JPEG, could be PNG | |
yield history | |
msg.submit( | |
user, | |
[msg, chatbot], | |
[chatbot], | |
queue=False | |
).then( | |
bot, | |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, | |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, | |
model_search_box, featured_model_radio], | |
[chatbot] | |
).then( | |
lambda: {"text": "", "files": []}, # Clear MultimodalTextbox | |
None, | |
[msg] | |
) | |
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio) | |
print("Model search box change event linked.") | |
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box) | |
print("Featured model radio button change event linked.") | |
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio) | |
print("BYOK textbox change event linked.") | |
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio) | |
print("Provider radio button change event linked.") | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch(show_api=True) |