Spaces:
Running
Running
File size: 19,845 Bytes
cb919f0 4db9e4f c5a20a4 ea82e64 cb919f0 4fa442d 8d2c697 cb919f0 717cd1f cb919f0 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 4fa442d 81286e1 717cd1f 81286e1 cb919f0 4fa442d 717cd1f a7fbaae cb919f0 4fa442d 717cd1f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f 4fa442d 4db9e4f a7fbaae 4fa442d 4db9e4f 4fa442d a7fbaae 4db9e4f 717cd1f 81286e1 717cd1f 4db9e4f 81286e1 4db9e4f 4fa442d 4db9e4f a7fbaae 4fa442d 8d2c697 4db9e4f 4fa442d 8d2c697 4db9e4f 717cd1f 4fa442d a7fbaae 4fa442d 6f66243 a7fbaae 81286e1 717cd1f cb919f0 81286e1 4fa442d 8d2c697 4fa442d cb919f0 717cd1f 81286e1 a7fbaae 4fa442d a7fbaae 717cd1f 4fa442d 717cd1f 81286e1 cb919f0 dc27384 4fa442d dc27384 4fa442d a7fbaae 4fa442d 6f66243 717cd1f 4fa442d a7fbaae 4fa442d a7fbaae 717cd1f a7fbaae dc27384 a7fbaae 717cd1f 4fa442d 4db9e4f a7fbaae 4db9e4f dc27384 4fa442d 717cd1f 4fa442d 8d2c697 4fa442d 8d2c697 4fa442d 8d2c697 a7fbaae 4db9e4f 4fa442d 8d2c697 4fa442d 8d2c697 4fa442d 8d2c697 4fa442d 4db9e4f 4fa442d 8d2c697 4fa442d 8d2c697 4fa442d 717cd1f 4db9e4f 4fa442d 4db9e4f 717cd1f 4db9e4f a7fbaae 717cd1f 4fa442d 717cd1f a7fbaae 717cd1f 4fa442d a7fbaae dc27384 4fa442d a7fbaae 4fa442d a7fbaae dc27384 4fa442d a7fbaae cb919f0 717cd1f cb919f0 717cd1f 4fa442d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
# Import smolagents Tool
from smolagents import Tool
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the image generation tool
# This can be defined globally as it doesn't change per request
try:
image_generation_tool = Tool.from_space(
"black-forest-labs/FLUX.1-schnell",
name="image_generator",
description="Generates an image from a text prompt. Use it when the user asks to 'generate an image of ...' or 'draw a picture of ...'. The input should be the descriptive prompt for the image."
)
print("Image generation tool loaded successfully.")
except Exception as e:
print(f"Error loading image generation tool: {e}")
image_generation_tool = None
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
# If it's already a PIL Image
if isinstance(image_path, Image.Image):
image = image_path
else:
# Try to open the image file
image = Image.open(image_path)
# Convert to RGB if image has an alpha channel (RGBA)
if image.mode == 'RGBA':
image = image.convert('RGB')
# Encode to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
def respond(
message_text, # Changed from 'message' to be explicit about text part
image_files, # This will be a list of paths from gr.MultimodalTextbox
history: list[list[Any, str | None]], # History can now contain complex user messages
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
print(f"Received message text: {message_text}")
print(f"Received {len(image_files) if image_files else 0} image files: {image_files}")
# print(f"History: {history}") # Can be very verbose
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Determine which token to use
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
user_text_message_lower = message_text.lower() if message_text else ""
image_keywords = ["generate image", "draw a picture of", "create an image of", "make an image of"]
is_image_generation_request = any(keyword in user_text_message_lower for keyword in image_keywords)
if is_image_generation_request and image_generation_tool:
print("Image generation request detected.")
image_prompt = message_text
for keyword in image_keywords:
if keyword in user_text_message_lower:
# Find the keyword in the original case-sensitive message text to split
keyword_start_index = user_text_message_lower.find(keyword)
image_prompt = message_text[keyword_start_index + len(keyword):].strip()
break
print(f"Extracted image prompt: {image_prompt}")
if not image_prompt:
yield {"type": "text", "content": "Please provide a description for the image you want to generate."}
return
try:
generated_image_path = image_generation_tool(prompt=image_prompt)
print(f"Image generated by tool, path: {generated_image_path}")
yield {"type": "image", "path": str(generated_image_path)} # Ensure path is string
return
except Exception as e:
print(f"Error during image generation tool call: {e}")
yield {"type": "text", "content": f"Sorry, I couldn't generate the image. Error: {str(e)}"}
return
elif is_image_generation_request and not image_generation_tool:
yield {"type": "text", "content": "Image generation tool is not available or failed to load."}
return
# If not an image generation request, proceed with text/multimodal LLM call
print("Proceeding with LLM call (text or multimodal).")
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
if seed == -1:
seed = None
# Prepare messages for LLM
llm_user_content = []
if message_text and message_text.strip():
llm_user_content.append({"type": "text", "text": message_text})
if image_files: # image_files is a list of paths from gr.MultimodalTextbox
for img_path in image_files:
if img_path:
try:
encoded_image = encode_image(img_path) # img_path is already a path
if encoded_image:
llm_user_content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
})
except Exception as e:
print(f"Error encoding image for LLM: {e}")
if not llm_user_content: # Should not happen if user() function filters empty messages
print("No content for LLM, aborting.")
yield {"type": "text", "content": "Please provide some input."}
return
messages_for_llm = [{"role": "system", "content": system_message}]
print("Initial messages array constructed for LLM.")
for val in history: # history item is [user_content_list, assistant_response_str_or_dict]
user_content_list_hist = val[0]
assistant_response_hist = val[1]
if user_content_list_hist:
# user_content_list_hist is already in the correct format (list of dicts)
messages_for_llm.append({"role": "user", "content": user_content_list_hist})
if assistant_response_hist:
# Assistant response could be text or an image dict from a previous tool call
if isinstance(assistant_response_hist, dict) and assistant_response_hist.get("type") == "image":
messages_for_llm.append({"role": "assistant", "content": [{"type": "text", "text": f"Assistant previously displayed image: {assistant_response_hist.get('path')}"}]})
elif isinstance(assistant_response_hist, str):
messages_for_llm.append({"role": "assistant", "content": assistant_response_hist})
# Else, if it's a dict but not an image type we understand for history, we might skip or log an error
messages_for_llm.append({"role": "user", "content": llm_user_content})
# print(f"Full messages_for_llm: {messages_for_llm}") # Can be very verbose
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for LLM inference: {model_to_use}")
response_text = ""
print(f"Sending request to {provider} provider for LLM.")
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
try:
stream = client.chat_completion(
model=model_to_use,
messages=messages_for_llm,
stream=True,
**parameters
)
print("Received LLM tokens: ", end="", flush=True)
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(token_text, end="", flush=True)
response_text += token_text
yield {"type": "text", "content": response_text}
print()
except Exception as e:
print(f"Error during LLM inference: {e}")
response_text += f"\nError: {str(e)}"
yield {"type": "text", "content": response_text}
print("Completed LLM response generation.")
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs. Try 'generate image of a cat playing chess'.",
layout="panel",
bubble_full_width=False
)
print("Chatbot interface created.")
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"]
)
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text. If asked to generate an image, respond by saying you will call the image_generator tool.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
with gr.Column():
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.", placeholder="Enter your Hugging Face API token", type="password")
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(label="Select a model below", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
chat_history = gr.State([])
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
def set_custom_model_from_radio(selected):
print(f"Featured model selected: {selected}")
return selected
def user(user_multimodal_input, history):
print(f"User input (raw from gr.MultimodalTextbox): {user_multimodal_input}")
text_content = user_multimodal_input.get("text", "").strip()
files = user_multimodal_input.get("files", []) # These are temp file paths from Gradio
if not text_content and not files:
print("Empty input, skipping history append.")
# Optionally, could raise gr.Error("Please enter a message or upload an image.")
# For now, let's allow the bot to respond if history is not empty,
# or do nothing if history is also empty.
return history
# Prepare content for history: a list of dicts for multimodal display
history_user_entry_content = []
if text_content:
history_user_entry_content.append({"type": "text", "text": text_content})
for file_path_obj in files: # file_path_obj is a FileData object from Gradio
if file_path_obj and hasattr(file_path_obj, 'name') and file_path_obj.name:
# Gradio's Chatbot can display images directly from file paths
# We store it in a format that `respond` can also understand
# The path is temporary, Gradio handles making it accessible for display
history_user_entry_content.append({"type": "image_url", "image_url": {"url": file_path_obj.name}})
print(f"Adding image to history entry: {file_path_obj.name}")
if history_user_entry_content:
history.append([history_user_entry_content, None]) # User part, Bot part (initially None)
return history
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
if not history or not history[-1][0]: # If no user message or empty user message content
print("No user message to process in bot function or user message content is empty.")
yield history # Return current history without processing
return
user_content_list = history[-1][0] # This is now a list of content dicts
# Extract text and image file paths from the user_content_list for the `respond` function
text_for_respond = ""
image_files_for_respond = []
for item in user_content_list:
if item["type"] == "text":
text_for_respond = item["text"]
elif item["type"] == "image_url":
image_files_for_respond.append(item["image_url"]["url"])
history[-1][1] = "" # Clear placeholder for bot response / Initialize bot response
# Call the respond function which is now a generator
for response_chunk in respond(
text_for_respond,
image_files_for_respond,
history[:-1], # Pass previous history
system_msg, max_tokens, temperature, top_p, freq_penalty, seed,
provider, api_key, custom_model, search_term, selected_model
):
current_bot_response = history[-1][1]
if isinstance(response_chunk, dict):
if response_chunk["type"] == "text":
# If current bot response is already an image dict, we can't append text.
# This indicates a new text response after an image, or just text.
if isinstance(current_bot_response, dict) and current_bot_response.get("type") == "image":
# This case should ideally not happen if an image is the final response from a tool.
# If it does, we might need to start a new bot message in history.
# For now, we'll overwrite if the new chunk is text.
history[-1][1] = response_chunk["content"]
elif isinstance(current_bot_response, str):
history[-1][1] = response_chunk["content"] # Accumulate text
else: # current_bot_response is likely "" or None
history[-1][1] = response_chunk["content"]
elif response_chunk["type"] == "image":
# Image response from tool. Gradio Chatbot displays this as an image.
# The path should be accessible by Gradio.
# If there was prior text content for this turn, it's now overwritten by the image.
# This means a tool call that produces an image is considered the primary response for that turn.
history[-1][1] = {"path": response_chunk["path"], "mime_type": "image/jpeg"} # Assuming JPEG, could be PNG
yield history
msg.submit(
user,
[msg, chatbot],
[chatbot],
queue=False
).then(
bot,
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio],
[chatbot]
).then(
lambda: {"text": "", "files": []}, # Clear MultimodalTextbox
None,
[msg]
)
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
print("Model search box change event linked.")
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
print("Featured model radio button change event linked.")
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("BYOK textbox change event linked.")
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("Provider radio button change event linked.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True) |