Nymbo's picture
Update app.py
75d7afe verified
raw
history blame
21.9 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import atexit
# Ensure smolagents and mcp are installed: pip install "smolagents[mcp]" mcp
from smolagents import ToolCollection, CodeAgent
from smolagents.mcp_client import MCPClient as SmolMCPClient # For connecting to MCP SSE servers
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# --- MCP Client Integration ---
mcp_tools_collection = ToolCollection(tools=[]) # Global store for loaded MCP tools
mcp_client_instances = [] # To keep track of client instances for proper closing
DEFAULT_MCP_SERVERS = [
{"name": "KokoroTTS (Example)", "type": "sse", "url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"}
]
def load_mcp_tools(server_configs_list):
global mcp_tools_collection, mcp_client_instances
# Close any existing client instances before loading new ones
for client_instance in mcp_client_instances:
try:
client_instance.close()
print(f"Closed existing MCP client: {client_instance}")
except Exception as e:
print(f"Error closing existing MCP client {client_instance}: {e}")
mcp_client_instances = []
all_discovered_tools = []
if not server_configs_list:
print("No MCP server configurations provided. Clearing MCP tools.")
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
return
print(f"Loading MCP tools from {len(server_configs_list)} server configurations...")
for config in server_configs_list:
server_name = config.get('name', config.get('url', 'Unknown Server'))
try:
if config.get("type") == "sse":
sse_url = config["url"]
print(f"Attempting to connect to MCP SSE server: {server_name} at {sse_url}")
# Using SmolMCPClient for SSE servers as shown in documentation
# The constructor expects server_parameters={"url": sse_url}
smol_mcp_client = SmolMCPClient(server_parameters={"url": sse_url})
mcp_client_instances.append(smol_mcp_client) # Keep track to close later
discovered_tools_from_server = smol_mcp_client.get_tools() # Returns a list of Tool objects
if discovered_tools_from_server:
all_discovered_tools.extend(list(discovered_tools_from_server))
print(f"Discovered {len(discovered_tools_from_server)} tools from {server_name}.")
else:
print(f"No tools discovered from {server_name}.")
# Add elif for "stdio" type if needed in the future, though it's more complex for Gradio apps
else:
print(f"Unsupported MCP server type '{config.get('type')}' for {server_name}. Skipping.")
except Exception as e:
print(f"Error loading MCP tools from {server_name}: {e}")
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
print(f"Successfully loaded a total of {len(mcp_tools_collection.tools)} MCP tools:")
for tool in mcp_tools_collection.tools:
print(f" - {tool.name}: {tool.description[:100]}...") # Print short description
else:
print("No MCP tools were loaded, or an error occurred.")
def cleanup_mcp_client_instances_on_exit():
global mcp_client_instances
print("Attempting to clean up MCP client instances on application exit...")
for client_instance in mcp_client_instances:
try:
client_instance.close()
print(f"Closed MCP client: {client_instance}")
except Exception as e:
print(f"Error closing MCP client {client_instance} on exit: {e}")
mcp_client_instances = []
print("MCP client cleanup finished.")
atexit.register(cleanup_mcp_client_instances_on_exit)
# --- End MCP Client Integration ---
# Function to encode image to base64 (remains the same)
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
if isinstance(image_path, Image.Image):
image = image_path
else:
image = Image.open(image_path)
if image.mode == 'RGBA':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# Modified respond function
def respond(
message_input_text, # From multimodal textbox's text part
image_files_list, # From multimodal textbox's files part
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term, # Not directly used in this function but passed by UI
selected_model # From radio
):
global mcp_tools_collection # Access the loaded MCP tools
print(f"Received message text: {message_input_text}")
print(f"Received {len(image_files_list) if image_files_list else 0} images")
# ... (keep other prints for debugging)
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
if seed == -1: seed = None
# --- Prepare current user message (potentially multimodal) ---
current_user_content_parts = []
if message_input_text and message_input_text.strip():
current_user_content_parts.append({"type": "text", "text": message_input_text.strip()})
if image_files_list:
for img_path in image_files_list:
if img_path: # img_path is the path to the uploaded file
encoded_img = encode_image(img_path)
if encoded_img:
current_user_content_parts.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
})
if not current_user_content_parts: # If message is truly empty
print("Skipping empty message.")
for item in history: yield item # hack to make gradio update with history
return
# --- Construct messages for LLM ---
llm_messages = [{"role": "system", "content": system_message}]
for hist_user, hist_assistant in history:
# Assuming history user part is already formatted (string or list of dicts)
if hist_user:
# Handle complex history items (tuples of text, list_of_image_paths)
if isinstance(hist_user, tuple) and len(hist_user) == 2:
hist_user_text, hist_user_images = hist_user
hist_user_parts = []
if hist_user_text: hist_user_parts.append({"type": "text", "text": hist_user_text})
for img_p in hist_user_images:
enc_img = encode_image(img_p)
if enc_img: hist_user_parts.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{enc_img}"}})
if hist_user_parts: llm_messages.append({"role": "user", "content": hist_user_parts})
elif isinstance(hist_user, str): # Simple text history
llm_messages.append({"role": "user", "content": hist_user})
# else: could be already formatted list of dicts from previous multimodal turn
if hist_assistant:
llm_messages.append({"role": "assistant", "content": hist_assistant})
llm_messages.append({"role": "user", "content": current_user_content_parts if len(current_user_content_parts) > 1 else current_user_content_parts[0] if current_user_content_parts else ""})
model_to_use = custom_model.strip() if custom_model.strip() else selected_model
print(f"Model selected for inference: {model_to_use}")
# --- Agent Logic or Direct LLM Call ---
active_mcp_tools = list(mcp_tools_collection.tools) if mcp_tools_collection else []
if active_mcp_tools:
print(f"MCP tools are active ({len(active_mcp_tools)} tools). Using CodeAgent.")
# Wrapper for smolagents.CodeAgent to use our configured HF InferenceClient
class HFClientWrapperForAgent:
def __init__(self, hf_client, model_id, outer_scope_params):
self.client = hf_client
self.model_id = model_id
self.params = outer_scope_params
def generate(self, agent_llm_messages, tools=None, tool_choice=None, **kwargs):
# agent_llm_messages is from the agent. tools/tool_choice also from agent.
api_params = {
"model": self.model_id,
"messages": agent_llm_messages,
"stream": False, # CodeAgent's .run() expects a full response object
"max_tokens": self.params['max_tokens'],
"temperature": self.params['temperature'],
"top_p": self.params['top_p'],
"frequency_penalty": self.params['frequency_penalty'],
}
if self.params['seed'] is not None: api_params["seed"] = self.params['seed']
if tools: api_params["tools"] = tools
if tool_choice: api_params["tool_choice"] = tool_choice
print(f"Agent's HFClientWrapper calling LLM: {self.model_id}")
completion = self.client.chat_completion(**api_params)
return completion
outer_scope_llm_params = {
"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p,
"frequency_penalty": frequency_penalty, "seed": seed
}
agent_model_adapter = HFClientWrapperForAgent(hf_inference_client, model_to_use, outer_scope_llm_params)
agent = CodeAgent(tools=active_mcp_tools, model=agent_model_adapter)
# Prime agent with history (all messages except the current user query)
agent.messages = llm_messages[:-1]
# CodeAgent.run expects a string query. Extract text from current user message.
current_query_for_agent = message_input_text.strip() if message_input_text else "User provided image(s)."
if not current_query_for_agent and image_files_list: # If only image, provide a generic text
current_query_for_agent = "Describe the image(s) or follow instructions related to them."
elif not current_query_for_agent and not image_files_list: # Should not happen due to earlier check
current_query_for_agent = "..."
print(f"Query for CodeAgent.run: '{current_query_for_agent}' with {len(agent.messages)} history messages.")
try:
agent_final_text_response = agent.run(current_query_for_agent)
# Note: agent.run() is blocking and returns the final string.
# It won't stream token by token if tools are used.
yield agent_final_text_response
print("Completed response generation via CodeAgent.")
except Exception as e:
print(f"Error during CodeAgent execution: {e}")
yield f"Error using tools: {str(e)}"
return
else: # No MCP tools, use original streaming logic
print("No MCP tools active. Proceeding with direct LLM call (streaming).")
response_stream_content = ""
try:
stream = hf_inference_client.chat_completion(
model=model_to_use,
messages=llm_messages,
stream=True,
max_tokens=max_tokens, temperature=temperature, top_p=top_p,
frequency_penalty=frequency_penalty, seed=seed
)
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
token_text = delta.content
response_stream_content += token_text
yield response_stream_content
print("\nCompleted streaming response generation.")
except Exception as e:
print(f"Error during direct LLM inference: {e}")
yield response_stream_content + f"\nError: {str(e)}"
# Function to validate provider (remains the same)
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
chatbot = gr.Chatbot(
label="Serverless TextGen Hub",
height=600, show_copy_button=True,
placeholder="Select a model, (optionally) load MCP Tools, and begin chatting.",
layout="panel",
bubble_full_width=False
)
msg_input_box = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False, container=False, scale=12,
file_types=["image"], file_count="multiple", sources=["upload"]
)
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt")
with gr.Row():
# ... (max_tokens, temperature, top_p sliders remain the same)
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
with gr.Row():
# ... (frequency_penalty, seed sliders remain the same)
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(label="BYOK (Hugging Face API Key)", type="password", placeholder="Enter token if not using 'hf-inference'")
custom_model_box = gr.Textbox(label="Custom Model ID", placeholder="org/model-name (overrides selection below)")
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...")
models_list = [ # Keep your extensive model list
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
# ... (include all your models) ...
"microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
gr.Markdown("[All Text models](https://huggingface.co/models?pipeline_tag=text-generation) | [All Multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text)")
# --- MCP Client Settings UI ---
with gr.Accordion("MCP Client Settings (Connect to External Tools)", open=False):
gr.Markdown("Configure connections to MCP Servers to allow the LLM to use external tools. The LLM will decide when to use these tools based on your prompts.")
mcp_server_config_input = gr.Textbox(
label="MCP Server Configurations (JSON Array)",
info='Example: [{"name": "MyToolServer", "type": "sse", "url": "http://server_url/gradio_api/mcp/sse"}]',
lines=3,
placeholder='Enter a JSON list of server configurations here.',
value=json.dumps(DEFAULT_MCP_SERVERS, indent=2) # Pre-fill with defaults
)
mcp_load_status_display = gr.Textbox(label="MCP Load Status", interactive=False)
load_mcp_tools_btn = gr.Button("Load/Reload MCP Tools")
def handle_load_mcp_tools_click(config_str_from_ui):
if not config_str_from_ui:
load_mcp_tools([]) # Clear tools if config is empty
return "MCP tool loading attempted with empty config. Tools cleared."
try:
parsed_configs = json.loads(config_str_from_ui)
if not isinstance(parsed_configs, list):
return "Error: MCP configuration must be a valid JSON list."
load_mcp_tools(parsed_configs) # Call the main loading function
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
loaded_tool_names = [t.name for t in mcp_tools_collection.tools]
return f"Successfully loaded {len(loaded_tool_names)} MCP tools: {', '.join(loaded_tool_names)}"
else:
return "No MCP tools loaded, or an error occurred during loading. Check console for details."
except json.JSONDecodeError:
return "Error: Invalid JSON format in MCP server configurations."
except Exception as e:
print(f"Unhandled error in handle_load_mcp_tools_click: {e}")
return f"Error loading MCP tools: {str(e)}. Check console."
load_mcp_tools_btn.click(
handle_load_mcp_tools_click,
inputs=[mcp_server_config_input],
outputs=mcp_load_status_display
)
# --- End MCP Client Settings UI ---
# Chat history state (remains the same)
# chat_history = gr.State([]) # Not explicitly used if chatbot manages history directly
# Function to filter models (remains the same)
def filter_models(search_term):
return gr.update(choices=[m for m in models_list if search_term.lower() in m.lower()])
# Function to set custom model from radio (remains the same)
def set_custom_model_from_radio(selected):
return selected # Updates custom_model_box with the selected featured model
# Gradio's MultimodalTextbox submit action
# The `user` function is simplified as msg_input_box directly gives text and files
# The `bot` function is where the main logic of `respond` is called.
def handle_submit(msg_content_dict, current_chat_history):
# msg_content_dict = {"text": "...", "files": ["path1", "path2"]}
text = msg_content_dict.get("text", "")
files = msg_content_dict.get("files", [])
# Add user message to history for display
# For multimodal, we might want to display text and images separately or combined
user_display_entry = []
if text:
user_display_entry.append(text)
if files:
# For display, Gradio chatbot can render markdown images
for f_path in files:
user_display_entry.append(f"![{os.path.basename(f_path)}]({f_path})")
# Construct a representation for history that `respond` can unpack
# For simplicity, let's pass text and files separately to `respond`
# and the history will store the user input as (text, files_list_for_display)
history_entry_user_part = (text, files) # Store as tuple for `respond` to process easily later
current_chat_history.append([history_entry_user_part, None]) # Add user part, assistant is None for now
# Prepare for streaming response
# The `respond` function is a generator
assistant_response_accumulator = ""
for streamed_chunk in respond(
text, files,
current_chat_history[:-1], # Pass history *before* current turn
system_message_box.value, max_tokens_slider.value, temperature_slider.value,
top_p_slider.value, frequency_penalty_slider.value, seed_slider.value,
provider_radio.value, byok_textbox.value, custom_model_box.value,
model_search_box.value, featured_model_radio.value
):
assistant_response_accumulator = streamed_chunk
current_chat_history[-1][1] = assistant_response_accumulator # Update last assistant message
yield current_chat_history, {"text": "", "files": []} # Update chatbot, clear input
# Final update after stream (already done by last yield)
# yield current_chat_history, {"text": "", "files": []}
msg_input_box.submit(
handle_submit,
[msg_input_box, chatbot],
[chatbot, msg_input_box] # Output to chatbot and clear msg_input_box
)
model_search_box.change(filter_models, model_search_box, featured_model_radio)
featured_model_radio.change(set_custom_model_from_radio, featured_model_radio, custom_model_box)
byok_textbox.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
provider_radio.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
# Load default MCP tools on startup
load_mcp_tools(DEFAULT_MCP_SERVERS)
print(f"Initial MCP tools loaded: {len(mcp_tools_collection.tools) if mcp_tools_collection else 0} tools.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the Serverless TextGen Hub demo application.")
demo.launch(show_api=False) # show_api can be True if needed for other purposes