Spaces:
Running
Running
File size: 21,933 Bytes
038f313 1cee504 c5a20a4 ea82e64 75bf974 75d7afe 11de92c 75d7afe 038f313 db00df1 75d7afe 70d58c7 75d7afe 75bf974 6a6b98f 75d7afe 70d58c7 57cb471 70d58c7 75d7afe 70d58c7 75d7afe b47b1e3 57cb471 75d7afe 038f313 75d7afe 27c8b8d 038f313 3a64d68 98674ca 9e12544 75bf974 9e12544 75d7afe 038f313 75d7afe 9e12544 75d7afe 9e12544 75d7afe 8f939dc 2d6eaa5 75d7afe 1cee504 75d7afe 1cee504 75d7afe 901bafe 75d7afe d2ae72a 8f939dc 75d7afe 75bf974 75d7afe 70d58c7 75d7afe 70d58c7 8f939dc 75bf974 75d7afe 57fd5c0 75d7afe 8f939dc 57fd5c0 75d7afe 57fd5c0 75d7afe 8f939dc 75d7afe 8f939dc 75d7afe 8f939dc 75d7afe 57cb471 75d7afe d92e5cd 75d7afe 57cb471 75d7afe b0cbd1c 75d7afe 75bf974 75d7afe fdab9dd 75d7afe 9e12544 75d7afe 8f939dc 11de92c 75d7afe a9862a1 75d7afe 769901b 75d7afe 77298b9 75d7afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import atexit
# Ensure smolagents and mcp are installed: pip install "smolagents[mcp]" mcp
from smolagents import ToolCollection, CodeAgent
from smolagents.mcp_client import MCPClient as SmolMCPClient # For connecting to MCP SSE servers
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# --- MCP Client Integration ---
mcp_tools_collection = ToolCollection(tools=[]) # Global store for loaded MCP tools
mcp_client_instances = [] # To keep track of client instances for proper closing
DEFAULT_MCP_SERVERS = [
{"name": "KokoroTTS (Example)", "type": "sse", "url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"}
]
def load_mcp_tools(server_configs_list):
global mcp_tools_collection, mcp_client_instances
# Close any existing client instances before loading new ones
for client_instance in mcp_client_instances:
try:
client_instance.close()
print(f"Closed existing MCP client: {client_instance}")
except Exception as e:
print(f"Error closing existing MCP client {client_instance}: {e}")
mcp_client_instances = []
all_discovered_tools = []
if not server_configs_list:
print("No MCP server configurations provided. Clearing MCP tools.")
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
return
print(f"Loading MCP tools from {len(server_configs_list)} server configurations...")
for config in server_configs_list:
server_name = config.get('name', config.get('url', 'Unknown Server'))
try:
if config.get("type") == "sse":
sse_url = config["url"]
print(f"Attempting to connect to MCP SSE server: {server_name} at {sse_url}")
# Using SmolMCPClient for SSE servers as shown in documentation
# The constructor expects server_parameters={"url": sse_url}
smol_mcp_client = SmolMCPClient(server_parameters={"url": sse_url})
mcp_client_instances.append(smol_mcp_client) # Keep track to close later
discovered_tools_from_server = smol_mcp_client.get_tools() # Returns a list of Tool objects
if discovered_tools_from_server:
all_discovered_tools.extend(list(discovered_tools_from_server))
print(f"Discovered {len(discovered_tools_from_server)} tools from {server_name}.")
else:
print(f"No tools discovered from {server_name}.")
# Add elif for "stdio" type if needed in the future, though it's more complex for Gradio apps
else:
print(f"Unsupported MCP server type '{config.get('type')}' for {server_name}. Skipping.")
except Exception as e:
print(f"Error loading MCP tools from {server_name}: {e}")
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
print(f"Successfully loaded a total of {len(mcp_tools_collection.tools)} MCP tools:")
for tool in mcp_tools_collection.tools:
print(f" - {tool.name}: {tool.description[:100]}...") # Print short description
else:
print("No MCP tools were loaded, or an error occurred.")
def cleanup_mcp_client_instances_on_exit():
global mcp_client_instances
print("Attempting to clean up MCP client instances on application exit...")
for client_instance in mcp_client_instances:
try:
client_instance.close()
print(f"Closed MCP client: {client_instance}")
except Exception as e:
print(f"Error closing MCP client {client_instance} on exit: {e}")
mcp_client_instances = []
print("MCP client cleanup finished.")
atexit.register(cleanup_mcp_client_instances_on_exit)
# --- End MCP Client Integration ---
# Function to encode image to base64 (remains the same)
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
if isinstance(image_path, Image.Image):
image = image_path
else:
image = Image.open(image_path)
if image.mode == 'RGBA':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# Modified respond function
def respond(
message_input_text, # From multimodal textbox's text part
image_files_list, # From multimodal textbox's files part
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term, # Not directly used in this function but passed by UI
selected_model # From radio
):
global mcp_tools_collection # Access the loaded MCP tools
print(f"Received message text: {message_input_text}")
print(f"Received {len(image_files_list) if image_files_list else 0} images")
# ... (keep other prints for debugging)
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
if seed == -1: seed = None
# --- Prepare current user message (potentially multimodal) ---
current_user_content_parts = []
if message_input_text and message_input_text.strip():
current_user_content_parts.append({"type": "text", "text": message_input_text.strip()})
if image_files_list:
for img_path in image_files_list:
if img_path: # img_path is the path to the uploaded file
encoded_img = encode_image(img_path)
if encoded_img:
current_user_content_parts.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
})
if not current_user_content_parts: # If message is truly empty
print("Skipping empty message.")
for item in history: yield item # hack to make gradio update with history
return
# --- Construct messages for LLM ---
llm_messages = [{"role": "system", "content": system_message}]
for hist_user, hist_assistant in history:
# Assuming history user part is already formatted (string or list of dicts)
if hist_user:
# Handle complex history items (tuples of text, list_of_image_paths)
if isinstance(hist_user, tuple) and len(hist_user) == 2:
hist_user_text, hist_user_images = hist_user
hist_user_parts = []
if hist_user_text: hist_user_parts.append({"type": "text", "text": hist_user_text})
for img_p in hist_user_images:
enc_img = encode_image(img_p)
if enc_img: hist_user_parts.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{enc_img}"}})
if hist_user_parts: llm_messages.append({"role": "user", "content": hist_user_parts})
elif isinstance(hist_user, str): # Simple text history
llm_messages.append({"role": "user", "content": hist_user})
# else: could be already formatted list of dicts from previous multimodal turn
if hist_assistant:
llm_messages.append({"role": "assistant", "content": hist_assistant})
llm_messages.append({"role": "user", "content": current_user_content_parts if len(current_user_content_parts) > 1 else current_user_content_parts[0] if current_user_content_parts else ""})
model_to_use = custom_model.strip() if custom_model.strip() else selected_model
print(f"Model selected for inference: {model_to_use}")
# --- Agent Logic or Direct LLM Call ---
active_mcp_tools = list(mcp_tools_collection.tools) if mcp_tools_collection else []
if active_mcp_tools:
print(f"MCP tools are active ({len(active_mcp_tools)} tools). Using CodeAgent.")
# Wrapper for smolagents.CodeAgent to use our configured HF InferenceClient
class HFClientWrapperForAgent:
def __init__(self, hf_client, model_id, outer_scope_params):
self.client = hf_client
self.model_id = model_id
self.params = outer_scope_params
def generate(self, agent_llm_messages, tools=None, tool_choice=None, **kwargs):
# agent_llm_messages is from the agent. tools/tool_choice also from agent.
api_params = {
"model": self.model_id,
"messages": agent_llm_messages,
"stream": False, # CodeAgent's .run() expects a full response object
"max_tokens": self.params['max_tokens'],
"temperature": self.params['temperature'],
"top_p": self.params['top_p'],
"frequency_penalty": self.params['frequency_penalty'],
}
if self.params['seed'] is not None: api_params["seed"] = self.params['seed']
if tools: api_params["tools"] = tools
if tool_choice: api_params["tool_choice"] = tool_choice
print(f"Agent's HFClientWrapper calling LLM: {self.model_id}")
completion = self.client.chat_completion(**api_params)
return completion
outer_scope_llm_params = {
"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p,
"frequency_penalty": frequency_penalty, "seed": seed
}
agent_model_adapter = HFClientWrapperForAgent(hf_inference_client, model_to_use, outer_scope_llm_params)
agent = CodeAgent(tools=active_mcp_tools, model=agent_model_adapter)
# Prime agent with history (all messages except the current user query)
agent.messages = llm_messages[:-1]
# CodeAgent.run expects a string query. Extract text from current user message.
current_query_for_agent = message_input_text.strip() if message_input_text else "User provided image(s)."
if not current_query_for_agent and image_files_list: # If only image, provide a generic text
current_query_for_agent = "Describe the image(s) or follow instructions related to them."
elif not current_query_for_agent and not image_files_list: # Should not happen due to earlier check
current_query_for_agent = "..."
print(f"Query for CodeAgent.run: '{current_query_for_agent}' with {len(agent.messages)} history messages.")
try:
agent_final_text_response = agent.run(current_query_for_agent)
# Note: agent.run() is blocking and returns the final string.
# It won't stream token by token if tools are used.
yield agent_final_text_response
print("Completed response generation via CodeAgent.")
except Exception as e:
print(f"Error during CodeAgent execution: {e}")
yield f"Error using tools: {str(e)}"
return
else: # No MCP tools, use original streaming logic
print("No MCP tools active. Proceeding with direct LLM call (streaming).")
response_stream_content = ""
try:
stream = hf_inference_client.chat_completion(
model=model_to_use,
messages=llm_messages,
stream=True,
max_tokens=max_tokens, temperature=temperature, top_p=top_p,
frequency_penalty=frequency_penalty, seed=seed
)
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
token_text = delta.content
response_stream_content += token_text
yield response_stream_content
print("\nCompleted streaming response generation.")
except Exception as e:
print(f"Error during direct LLM inference: {e}")
yield response_stream_content + f"\nError: {str(e)}"
# Function to validate provider (remains the same)
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
chatbot = gr.Chatbot(
label="Serverless TextGen Hub",
height=600, show_copy_button=True,
placeholder="Select a model, (optionally) load MCP Tools, and begin chatting.",
layout="panel",
bubble_full_width=False
)
msg_input_box = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False, container=False, scale=12,
file_types=["image"], file_count="multiple", sources=["upload"]
)
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt")
with gr.Row():
# ... (max_tokens, temperature, top_p sliders remain the same)
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
with gr.Row():
# ... (frequency_penalty, seed sliders remain the same)
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(label="BYOK (Hugging Face API Key)", type="password", placeholder="Enter token if not using 'hf-inference'")
custom_model_box = gr.Textbox(label="Custom Model ID", placeholder="org/model-name (overrides selection below)")
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...")
models_list = [ # Keep your extensive model list
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
# ... (include all your models) ...
"microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
gr.Markdown("[All Text models](https://huggingface.co/models?pipeline_tag=text-generation) | [All Multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text)")
# --- MCP Client Settings UI ---
with gr.Accordion("MCP Client Settings (Connect to External Tools)", open=False):
gr.Markdown("Configure connections to MCP Servers to allow the LLM to use external tools. The LLM will decide when to use these tools based on your prompts.")
mcp_server_config_input = gr.Textbox(
label="MCP Server Configurations (JSON Array)",
info='Example: [{"name": "MyToolServer", "type": "sse", "url": "http://server_url/gradio_api/mcp/sse"}]',
lines=3,
placeholder='Enter a JSON list of server configurations here.',
value=json.dumps(DEFAULT_MCP_SERVERS, indent=2) # Pre-fill with defaults
)
mcp_load_status_display = gr.Textbox(label="MCP Load Status", interactive=False)
load_mcp_tools_btn = gr.Button("Load/Reload MCP Tools")
def handle_load_mcp_tools_click(config_str_from_ui):
if not config_str_from_ui:
load_mcp_tools([]) # Clear tools if config is empty
return "MCP tool loading attempted with empty config. Tools cleared."
try:
parsed_configs = json.loads(config_str_from_ui)
if not isinstance(parsed_configs, list):
return "Error: MCP configuration must be a valid JSON list."
load_mcp_tools(parsed_configs) # Call the main loading function
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
loaded_tool_names = [t.name for t in mcp_tools_collection.tools]
return f"Successfully loaded {len(loaded_tool_names)} MCP tools: {', '.join(loaded_tool_names)}"
else:
return "No MCP tools loaded, or an error occurred during loading. Check console for details."
except json.JSONDecodeError:
return "Error: Invalid JSON format in MCP server configurations."
except Exception as e:
print(f"Unhandled error in handle_load_mcp_tools_click: {e}")
return f"Error loading MCP tools: {str(e)}. Check console."
load_mcp_tools_btn.click(
handle_load_mcp_tools_click,
inputs=[mcp_server_config_input],
outputs=mcp_load_status_display
)
# --- End MCP Client Settings UI ---
# Chat history state (remains the same)
# chat_history = gr.State([]) # Not explicitly used if chatbot manages history directly
# Function to filter models (remains the same)
def filter_models(search_term):
return gr.update(choices=[m for m in models_list if search_term.lower() in m.lower()])
# Function to set custom model from radio (remains the same)
def set_custom_model_from_radio(selected):
return selected # Updates custom_model_box with the selected featured model
# Gradio's MultimodalTextbox submit action
# The `user` function is simplified as msg_input_box directly gives text and files
# The `bot` function is where the main logic of `respond` is called.
def handle_submit(msg_content_dict, current_chat_history):
# msg_content_dict = {"text": "...", "files": ["path1", "path2"]}
text = msg_content_dict.get("text", "")
files = msg_content_dict.get("files", [])
# Add user message to history for display
# For multimodal, we might want to display text and images separately or combined
user_display_entry = []
if text:
user_display_entry.append(text)
if files:
# For display, Gradio chatbot can render markdown images
for f_path in files:
user_display_entry.append(f"")
# Construct a representation for history that `respond` can unpack
# For simplicity, let's pass text and files separately to `respond`
# and the history will store the user input as (text, files_list_for_display)
history_entry_user_part = (text, files) # Store as tuple for `respond` to process easily later
current_chat_history.append([history_entry_user_part, None]) # Add user part, assistant is None for now
# Prepare for streaming response
# The `respond` function is a generator
assistant_response_accumulator = ""
for streamed_chunk in respond(
text, files,
current_chat_history[:-1], # Pass history *before* current turn
system_message_box.value, max_tokens_slider.value, temperature_slider.value,
top_p_slider.value, frequency_penalty_slider.value, seed_slider.value,
provider_radio.value, byok_textbox.value, custom_model_box.value,
model_search_box.value, featured_model_radio.value
):
assistant_response_accumulator = streamed_chunk
current_chat_history[-1][1] = assistant_response_accumulator # Update last assistant message
yield current_chat_history, {"text": "", "files": []} # Update chatbot, clear input
# Final update after stream (already done by last yield)
# yield current_chat_history, {"text": "", "files": []}
msg_input_box.submit(
handle_submit,
[msg_input_box, chatbot],
[chatbot, msg_input_box] # Output to chatbot and clear msg_input_box
)
model_search_box.change(filter_models, model_search_box, featured_model_radio)
featured_model_radio.change(set_custom_model_from_radio, featured_model_radio, custom_model_box)
byok_textbox.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
provider_radio.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
# Load default MCP tools on startup
load_mcp_tools(DEFAULT_MCP_SERVERS)
print(f"Initial MCP tools loaded: {len(mcp_tools_collection.tools) if mcp_tools_collection else 0} tools.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the Serverless TextGen Hub demo application.")
demo.launch(show_api=False) # show_api can be True if needed for other purposes |