File size: 1,761 Bytes
6f7a81d
d3b509b
 
6f7a81d
d3b509b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7a81d
fcc6bc3
 
 
 
 
 
d3b509b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import pickle
from transformers import pipeline

def load_model(selected_model):
    with open(selected_model, 'rb') as file:
        loaded_model = pickle.load(file)
    return loaded_model

def predict(model, text):
    encoder = {
        0:'assets/negative.jpeg',
        1:'assets/neutral.jpeg',
        2:'assets/positive.jpeg'
    }
    selected_model = None
    with open('vectorizer.pkl', 'rb') as file:
        vectorizer = pickle.load(file)

    if 'Random Forest' == model:
        selected_model = "models/rf_twitter.pkl"
    elif 'Logistic Regression' == model:
        selected_model = "models/lg_twitter.pkl"
    elif 'Naive Bayes' == model:
        selected_model = "models/nb_twitter.pkl"
    elif 'Decision Tree' == model:
        selected_model = "models/dt_twitter.pkl"
    elif 'KNN' == model:
        selected_model = "models/knn_twitter.pkl"
    else:
        selected_model = "models/lg_twitter.pkl"
    loaded_model = load_model(selected_model)
    text_vector = vectorizer.transform([text])
    prediction = loaded_model.predict(text_vector)
    return encoder[prediction[0]]
    
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
def analyze_sentiment(text):
  results = classifier(text, ["positive", "negative", "neutral"], multi_label=True)
  sentiment = max(results['labels'], key=results['scores'].__getitem__)
  return sentiment

# models = gr.Radio(['Random Forest', 'Logistic Regression','Naive Bayes','Decision Tree','KNN'], label="Choose model")
# demo = gr.Interface(fn=predict, inputs=[models,"text"], outputs="image", title="Sentiment Analysis") 
demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="text", title="Sentiment Analysis") 
demo.launch()