File size: 807 Bytes
6f7a81d d3b509b 6f7a81d d3b509b e9dc27e d3b509b e9dc27e fcc6bc3 e9dc27e fcc6bc3 e9dc27e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import gradio as gr
import pickle
from transformers import pipeline
def load_model(selected_model):
with open(selected_model, 'rb') as file:
loaded_model = pickle.load(file)
return loaded_model
encoder = {
'negative':'assets/negative.jpeg',
'neutral':'assets/neutral.jpeg',
'positive':'assets/positive.jpeg'
}
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
def analyze_sentiment(text):
results = classifier(text,["positive","negative",'neutral'],multi_label=True)
mx = max(results['scores'])
ind = results['scores'].index(mx)
result = results['labels'][ind]
return encoder[result]
demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis")
demo.launch(share=True) |