File size: 807 Bytes
6f7a81d
d3b509b
 
6f7a81d
d3b509b
 
 
 
 
e9dc27e
 
 
 
d3b509b
e9dc27e
fcc6bc3
 
e9dc27e
 
 
 
 
fcc6bc3
e9dc27e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import gradio as gr
import pickle
from transformers import pipeline

def load_model(selected_model):
    with open(selected_model, 'rb') as file:
        loaded_model = pickle.load(file)
    return loaded_model

encoder = {
        'negative':'assets/negative.jpeg',
        'neutral':'assets/neutral.jpeg',
        'positive':'assets/positive.jpeg'
    }

classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
def analyze_sentiment(text):
  results = classifier(text,["positive","negative",'neutral'],multi_label=True)
  mx = max(results['scores'])
  ind = results['scores'].index(mx)
  result = results['labels'][ind]
  return encoder[result]

demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis") 
demo.launch(share=True)