Omarrran's picture
Create app.py
bfdc429 verified
# app.py
import os
from google import genai
import gradio as gr
import PyPDF2
import numpy as np
# Try importing DSPy for chain-of-thought reasoning
try:
import dspy
HAS_DSPY = True
except ImportError:
HAS_DSPY = False
#############################################
# Load Gemini API key from environment variable
#############################################
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("Please set the GEMINI_API_KEY environment variable.")
# Initialize the Gemini API client with the secret key
client = genai.Client(api_key=GEMINI_API_KEY)
#############################################
# Custom DSPy Prompt Signature Function
#############################################
def custom_dspy_prompt(text, mode="summarization"):
"""
Returns a custom chain-of-thought prompt signature for DSPy.
Modes:
- "summarization": for summarizing a text chunk.
- "overall": for combining chunk summaries.
"""
if mode == "summarization":
return (f"EffectiveDSPyCOT: Please provide a detailed, robust, and token-expansive summary using chain-of-thought reasoning. "
f"Preserve context and key details. Text:\n\n{text}")
elif mode == "overall":
return (f"EffectiveDSPyCOT: Combine the following chunk summaries into an overall comprehensive summary. "
f"Expand on details and maintain context with chain-of-thought reasoning. Summaries:\n\n{text}")
else:
return text
#############################################
# Fallback Using Gemini's generate_content Method
#############################################
def fallback_predict(prompt, system_msg="You are a helpful assistant."):
"""
Uses the Gemini API (generate_content method) to generate content.
"""
try:
full_prompt = f"{system_msg}\n\n{prompt}"
response = client.models.generate_content(
model="gemini-2.0-flash", # Adjust model name as needed.
contents=full_prompt
)
return response.text
except Exception as e:
return f"[Gemini fallback error]: {str(e)}"
#############################################
# PDF Extraction and Improved Chunking
#############################################
def extract_text_from_pdf(pdf_path):
"""
Extract text from all pages of a PDF file.
"""
text = ""
with open(pdf_path, "rb") as f:
pdf_reader = PyPDF2.PdfReader(f)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
def chunk_text(text, chunk_size=2000, overlap=300):
"""
Split the text into overlapping chunks.
Larger chunk size and overlap help maintain context and expand token capacity.
"""
words = text.split()
chunks = []
start = 0
while start < len(words):
end = min(start + chunk_size, len(words))
chunk = " ".join(words[start:end])
chunks.append(chunk)
start += chunk_size - overlap # Advance with overlap
return chunks
#############################################
# Summarizing a Single Chunk with Custom DSPy / Gemini
#############################################
def summarize_chunk(chunk):
"""
Summarize a text chunk using a custom DSPy chain-of-thought prompt.
Falls back to Gemini if DSPy is not available or fails.
"""
prompt = custom_dspy_prompt(chunk, mode="summarization")
if HAS_DSPY:
try:
summary = dspy.predict(prompt)
except Exception as e:
summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.")
else:
summary = fallback_predict(prompt, system_msg="You are a helpful summarizer.")
return summary
#############################################
# Summarizing the Entire PDF
#############################################
def summarize_document(pdf_path):
"""
Extract text from PDF, split it into overlapping chunks, summarize each chunk,
and then combine the chunk summaries into an overall document summary.
"""
text = extract_text_from_pdf(pdf_path)
chunks = chunk_text(text)
summaries = []
for chunk in chunks:
summary = summarize_chunk(chunk)
summaries.append(summary)
overall_prompt = custom_dspy_prompt("\n\n".join(summaries), mode="overall")
if HAS_DSPY:
try:
overall_summary = dspy.predict(overall_prompt)
except Exception as e:
overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.")
else:
overall_summary = fallback_predict(overall_prompt, system_msg="You are a helpful assistant that summarizes documents.")
return overall_summary, summaries
#############################################
# Enhanced Gradio Interface with Better UI Aesthetics (Summarization Only)
#############################################
custom_css = """
<style>
body { background-color: #f4f7f9; }
.gradio-container { font-family: 'Arial', sans-serif; }
h1, h2, h3 { color: #333333; }
.tab-header { background-color: #ffffff; border-bottom: 2px solid #e0e0e0; }
.gr-button { background-color: #4CAF50; color: white; }
.gr-textbox { background-color: #ffffff; }
</style>
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("## PDF Summarization Interface with Gemini API\n"
"Upload a PDF document to get a robust, detailed summary using a custom DSPy chain-of-thought prompt.\n")
with gr.Row():
pdf_input_sum = gr.File(label="Upload PDF for Summarization", file_types=['.pdf'])
summarize_button = gr.Button("Summarize Document")
overall_summary_output = gr.Textbox(label="Overall Document Summary", lines=8)
chunk_summaries_output = gr.Textbox(label="Chunk Summaries", lines=10)
def process_and_summarize(pdf_file):
if pdf_file is None:
return "No file uploaded.", "No file uploaded."
file_path = pdf_file.name
overall, chunks = summarize_document(file_path)
return overall, "\n\n".join(chunks)
summarize_button.click(
fn=process_and_summarize,
inputs=pdf_input_sum,
outputs=[overall_summary_output, chunk_summaries_output]
)
demo.launch()