File size: 9,218 Bytes
0445b72
3f03254
c60cfa4
0445b72
 
6465660
0445b72
19ca9d4
 
5412e8d
4f34618
eb054d8
6313927
6cc97b1
7b85041
98046f7
7b85041
429301e
7b85041
 
429301e
7b85041
 
 
 
 
 
 
 
429301e
7b85041
 
429301e
 
 
 
7b85041
 
429301e
7b85041
 
 
 
 
 
 
 
429301e
 
 
7b85041
 
 
 
 
 
429301e
7b85041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429301e
7b85041
 
 
 
 
 
 
 
 
429301e
7b85041
 
429301e
 
7b85041
 
 
 
 
 
 
 
 
 
 
 
 
429301e
7b85041
 
 
 
 
 
429301e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6628404
 
0840e72
a367ae6
215d546
0840e72
 
 
 
 
 
2099764
7e2f99d
a150dbe
 
 
 
 
 
0840e72
 
 
 
e748eae
0840e72
6f1535f
 
 
a150dbe
 
 
f04efc7
 
7e2f99d
0680ac2
 
 
 
 
 
 
7e2f99d
f18bb89
0840e72
0680ac2
 
a367ae6
2099764
7e2f99d
0445b72
 
7e2f99d
3d1449e
a150dbe
 
0445b72
 
 
 
6f1535f
0edde58
44402e2
86d74a1
 
 
e37ccb3
0edde58
 
 
3d87288
7e2f99d
 
5412e8d
 
7e2f99d
0445b72
7e2f99d
5412e8d
7e2f99d
6f1535f
2099764
 
0445b72
a1aed99
126b712
 
 
 
 
 
 
 
 
 
 
 
 
 
e37ccb3
186d961
126b712
7e2f99d
186d961
7e2f99d
 
 
 
 
 
 
 
0840e72
6f1535f
0840e72
7a5720e
186d961
 
 
 
98046f7
 
3f03254
98046f7
 
186d961
0840e72
585669b
0445b72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gradio as gr
import pandas as pd
import numpy as np
import easyocr
import torch
import cv2
import PIL
import sys 
import os
import uuid
from PIL import ImageFont, ImageDraw, Image
this=gr.Interface.load("spaces/Omnibus/Translate-100_link")

 
lang_id = {
    "":"",
    "Afrikaans": "af",
    "Albanian": "sq",
    "Amharic": "am",
    "Arabic": "ar",
    "Armenian": "hy",
    "Asturian": "ast",
    "Azerbaijani": "az",
    "Bashkir": "ba",
    "Belarusian": "be",
    "Bulgarian": "bg",
    "Bengali": "bn",
    "Breton": "br",
    "Bosnian": "bs",
    "Burmese": "my",
    "Catalan": "ca",
    "Cebuano": "ceb",
    "Chinese": "zh",
    "Chinese (simplified)": "zh",
    "Chinese (traditional)": "zh",    
    "Croatian": "hr",
    "Czech": "cs",
    "Danish": "da",
    "Dutch": "nl",
    "English": "en",
    "Estonian": "et",
    "Fulah": "ff",
    "Finnish": "fi",
    "French": "fr",
    "Western Frisian": "fy",
    "Gaelic": "gd",
    "Galician": "gl",
    "Georgian": "ka",
    "German": "de",
    "Greek": "el",
    "Gujarati": "gu",
    "Hausa": "ha",
    "Hebrew": "he",
    "Hindi": "hi",
    "Haitian": "ht",
    "Hungarian": "hu",
    "Irish": "ga",
    "Indonesian": "id",
    "Igbo": "ig",
    "Iloko": "ilo",
    "Icelandic": "is",
    "Italian": "it",
    "Japanese": "ja",
    "Javanese": "jv",
    "Kazakh": "kk",
    "Central Khmer": "km",
    "Kannada": "kn",
    "Korean": "ko",
    "Luxembourgish": "lb",
    "Ganda": "lg",
    "Lingala": "ln",
    "Lao": "lo",
    "Lithuanian": "lt",
    "Latvian": "lv",
    "Malagasy": "mg",
    "Macedonian": "mk",
    "Malayalam": "ml",
    "Mongolian": "mn",
    "Marathi": "mr",
    "Malay": "ms",
    "Nepali": "ne",
    "Norwegian": "no",
    "Northern Sotho": "ns",
    "Occitan": "oc",
    "Oriya": "or",
    "Panjabi": "pa",
    "Persian": "fa",
    "Polish": "pl",
    "Pushto": "ps",
    "Portuguese": "pt",
    "Romanian": "ro",
    "Russian": "ru",
    "Sindhi": "sd",
    "Sinhala": "si",
    "Slovak": "sk",
    "Slovenian": "sl",
    "Spanish": "es",
    "Somali": "so",
    "Serbian": "sr",
    "Serbian (cyrillic)": "sr",
    "Serbian (latin)": "sr",    
    "Swati": "ss",
    "Sundanese": "su",
    "Swedish": "sv",
    "Swahili": "sw",
    "Tamil": "ta",
    "Thai": "th",
    "Tagalog": "tl",
    "Tswana": "tn",
    "Turkish": "tr",
    "Ukrainian": "uk",
    "Urdu": "ur",
    "Uzbek": "uz",
    "Vietnamese": "vi",
    "Welsh": "cy",
    "Wolof": "wo",
    "Xhosa": "xh",
    "Yiddish": "yi",
    "Yoruba": "yo",
    "Zulu": "zu",
}
ocr_id = {
    "":"",
    "Afrikaans": "af",
    "Albanian": "sq",
    "Arabic": "ar",
    "Azerbaijani": "az",
    "Belarusian": "be",
    "Bulgarian": "bg",
    "Bengali": "bn",
    "Bosnian": "bs",
    "Chinese (simplified)": "ch_sim",
    "Chinese (traditional)": "ch_tra",
    "Croatian": "hr",
    "Czech": "cs",
    "Danish": "da",
    "Dutch": "nl",
    "English": "en",
    "Estonian": "et",
    "French": "fr",
    "German": "de",
    "Irish": "ga",
    "Hindi": "hi",
    "Hungarian": "hu",
    "Indonesian": "id",
    "Icelandic": "is",
    "Italian": "it",
    "Japanese": "ja",
    "Kannada": "kn",
    "Korean": "ko",
    "Lithuanian": "lt",
    "Latvian": "lv",
    "Mongolian": "mn",
    "Marathi": "mr",
    "Malay": "ms",
    "Nepali": "ne",
    "Norwegian": "no",
    "Occitan": "oc",
    "Polish": "pl",
    "Portuguese": "pt",
    "Romanian": "ro",
    "Russian": "ru",
    "Serbian (cyrillic)": "rs_cyrillic",
    "Serbian (latin)": "rs_latin",
    "Slovak": "sk",
    "Slovenian": "sl",
    "Spanish": "es",
    "Swedish": "sv",
    "Swahili": "sw",
    "Tamil": "ta",
    "Thai": "th",
    "Tagalog": "tl",
    "Turkish": "tr",
    "Ukrainian": "uk",
    "Urdu": "ur",
    "Uzbek": "uz",
    "Vietnamese": "vi",
    "Welsh": "cy",
    "Zulu": "zu",
}


def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac,t_color):
    im = cv2.imread(img)
    im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    if t_color == "Black":
        t_fill = (0,0,0)
        pass
    elif t_color == "White":
        t_fill = (255,255,255)
        pass
    for bound in bounds:
        if bound[2]>=(ocr_sens):
            p0, p1, p2, p3 = bound[0]
            x = int(p0[0])
            y = int(p0[1])
            w = int(p2[0]) - int(x)
            h = int(p2[1]) - int(y)
            kernel = np.ones((3, 3), np.uint8)
            if t_color=="Black":
                im[y:y+h, x:x+w] = cv2.dilate(im[y:y+h, x:x+w], kernel, iterations=3)
                pass
            elif t_color=="White":
                im[y:y+h, x:x+w] = cv2.erode(im[y:y+h, x:x+w], kernel, iterations=1)
                pass
            else:
                pass
            
            im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0)
        else:
            pass
    im = Image.fromarray(im)
    for bound in bounds:
        if bound[2]>=(ocr_sens):
            p0, p1, p2, p3 = bound[0]
            x = int(p0[0])
            y = int(p0[1])
            w = int(p2[0]) - int(x)
            h = int(p2[1]) - int(y)
            draw = ImageDraw.Draw(im)
            text = this(bound[1],target_lang,trans_lang)
            font_size=int(int(h)*font_fac)
            font = ImageFont.truetype("./fonts/unifont-15.0.01.ttf", int(font_size))
            draw.text((x, y),text, font = font, fill=t_fill)
        else:
            pass
    return im
    
def draw_boxes(image, bounds, ocr_sens,width=1):
    draw = ImageDraw.Draw(image)
    for bound in bounds:
        if bound[2]>=(ocr_sens):
            color = "blue"
        else:
            color = "red"
        p0, p1, p2, p3 = bound[0]
        draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
    return image

def detect(img, target_lang,trans_lang,ocr_sens,font_fac,t_color):
    '''
    if target_lang2 != None and target_lang2 != "":
        lang=f"{lang_id[target_lang]}"
        lang2=f"{lang_id[target_lang2]}"
        lang=[lang,lang2]
    else:
    '''
    lang=[f"{ocr_id[target_lang]}"]
        

    img = Image.open(img)
    img.thumbnail((1000,1000), Image.Resampling.LANCZOS)
    path = f"/tmp/{uuid.uuid4()}.jpg"
    img.save(path)
    img1 = np.array(img)
    reader = easyocr.Reader(lang)
    bounds = reader.readtext(img1)
    im = PIL.Image.open(path)
    im_out=draw_boxes(im, bounds,ocr_sens)
    blr_out=blur_im(path,bounds,target_lang,trans_lang,ocr_sens,font_fac,t_color)
    return im_out,blr_out,pd.DataFrame(bounds),pd.DataFrame(bounds).iloc[:,1:]
    
with gr.Blocks() as robot:
    gr.Markdown("""<h1><center>Translate Image to Image</center></h1><h4><center>EasyOCR and facebook/m2m100_1.2B</center></h4><h7><center>If you recieve other users images, please report it in the Community button</center></h7><h7><center>*translation may not be accurate</center></h7>""")
    with gr.Accordion(label="Description",open=False):
        with gr.Row():
            gr.Markdown("""<p> Drop your image in the "Image to Translate" Box<br>
                           Select the Language to Detect in the Image<br>
                           Select the Language to Translate to<br>
                           Click "Go" Button </p>""")
            gr.Markdown("""<p> Translation Model: <a href="https://huggingface.co/facebook/m2m100_1.2B">facebook/m2m100_1.2B</a><br>
                               OCR: <a href="https://www.jaided.ai/easyocr">easyocr</a><br>
                            Influence by:<br> 
                            <a href="https://huggingface.co/spaces/venz/AW-05-GR-NLP-Image2Text-Multilingual-OCR">venz/AW-05-GR-NLP-Image2Text-Multilingual-OCR</a><br>
                            <a href="https://huggingface.co/spaces/Iker/Translate-100-languages">Iker/Translate-100-languages</a><br>
                            </p>""")


    with gr.Row():
        with gr.Column():
            im=gr.Image(label="Image to Translate",type="filepath")

        with gr.Column():
            with gr.Group():
                with gr.Row():
                    with gr.Column():
                        target_lang = gr.Dropdown(label="Detect language:", choices=list(ocr_id.keys()),value="English")
                        trans_lang = gr.Dropdown(label="Translate to:", choices=list(lang_id.keys()),value="Chinese")
                    with gr.Column():
                        ocr_sens=gr.Slider(0.1, 1, step=0.05,value=0.25,label="Detect Min Confidence")
                        font_fac=gr.Slider(0.1, 1, step =0.1,value=0.4,label="Font Scale")
                        ocr_space=gr.Slider(1,10, step=1,value=5,label="Future Function")     
                        text_color=gr.Radio(label="Font Color",choices=["Black", "White"], value="Black")

            go_btn=gr.Button("Go")
    with gr.Row():
        with gr.Column():
            out_im=gr.Image()
        with gr.Column():
            trans_im=gr.Image()            

    with gr.Row():
        out_txt=gr.Textbox(lines=8)
        data_f=gr.Dataframe()
                        
    go_btn.click(detect,[im,target_lang,trans_lang,ocr_sens,font_fac,text_color],[out_im,trans_im,out_txt,data_f])
    #go_btn.click(detect,[im,target_lang,target_lang2],[out_im,trans_im,out_txt,data_f])
robot.queue(concurrency_count=10).launch()