File size: 13,873 Bytes
b03d3b6
69d06c3
bb03459
cf6ba24
 
 
75b2af7
b03d3b6
 
 
 
 
 
 
 
 
8118ddb
12445b5
8118ddb
db78288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03d3b6
f08b9d8
9435ff3
8118ddb
 
db78288
12445b5
6f25720
8118ddb
882d620
df9068d
 
 
 
 
 
 
 
8d05399
df9068d
 
 
8d05399
 
 
 
 
 
 
 
 
 
 
f1ee15c
8d05399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1ee15c
8d05399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1ee15c
8d05399
882d620
 
 
 
 
 
 
 
 
 
 
 
 
 
b87140c
882d620
 
 
 
 
 
fdde55e
882d620
 
 
 
feaad6f
882d620
 
 
 
 
feaad6f
882d620
d5a06db
 
 
 
 
 
882d620
8d05399
d5a06db
8d05399
 
 
 
 
 
 
d4e41da
882d620
 
8d05399
 
 
 
882d620
 
8d05399
882d620
 
 
 
 
 
 
8d05399
 
882d620
8d05399
882d620
8d05399
a912654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d05399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a912654
8d05399
a912654
8d05399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a912654
 
8d05399
 
 
 
 
 
 
 
 
 
 
 
 
 
a912654
 
8d05399
 
 
 
 
 
 
 
 
 
 
a912654
 
 
 
 
 
 
 
 
 
 
8d05399
 
 
a912654
 
 
 
 
8d05399
a912654
 
7aaac7c
a912654
 
8d05399
 
a912654
8d05399
3d0bcee
 
 
a912654
8d05399
a912654
 
 
 
 
8d05399
a912654
8d05399
 
 
a912654
7aaac7c
 
 
 
 
 
 
 
 
 
fd04976
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Dict, List
import gradio as gr
import pandas as pd
import json
from src.core import *

app = FastAPI(
    title="Insight Finder",
    description="Find relevant technologies from a problem",
)

class InputData(BaseModel):
    problem: str

class InputConstraints(BaseModel):
    constraints: Dict[str, str]
    
# This schema defines the structure for a single technology object
class Technology(BaseModel):
    """Represents a single technology entry with its details."""
    title: str
    purpose: str
    key_components: str
    advantages: str
    limitations: str
    id: int

# This schema defines the root structure of the JSON
class TechnologyData(BaseModel):
    """Represents the top-level object containing a list of technologies."""
    technologies: List[Technology]

@app.post("/process", response_model=TechnologyData)
async def process(data: InputData):
    result = process_input(data, global_tech, global_tech_embeddings)
    return {"technologies": result}


@app.post("/process-constraints", response_model=TechnologyData)
async def process_constraints(constraints: InputConstraints):
    result = process_input_from_constraints(constraints.constraints, global_tech, global_tech_embeddings)
    return {"technologies": result}


def make_json_serializable(data):
    if isinstance(data, dict):
        return {k: make_json_serializable(v) for k, v in data.items()}
    elif isinstance(data, list):
        return [make_json_serializable(item) for item in data]
    elif isinstance(data, tuple):
        return tuple(make_json_serializable(item) for item in data)
    elif hasattr(data, 'item'):
        return float(data.item())
    else:
        return data

# --- Helper functions to format HTML outputs ---
def format_constraints_html(constraints: dict) -> str:
    html_content = "<div class='constraints-container'>"
    for title, description in constraints.items():
        html_content += f"""
        <div class='constraint-item'>
            <p><span class='constraint-title'>{title}:</span> <span class='constraint-description'>{description}</span></p>
        </div>
        """
    html_content += "</div>"
    return "<h1>Retrieved Constraints</h1>" + html_content

def format_best_combinations_html(combinations_data: list) -> str:
    html_content = "<div class='combinations-outer-container'>"
    for i, combination in enumerate(combinations_data):
        problem_title = combination.get("problem", {}).get("title", f"Problem {i+1}")
        technologies = combination.get("technologies", [])

        html_content += f"""
        <div class='problem-card'>
            <h3 class='problem-card-title'>{problem_title}</h3>
            <div class='technologies-inner-container'>
        """
        for tech_info_score in technologies:
            tech_info = tech_info_score[0] # The dictionary part
            if isinstance(tech_info, dict):
                html_content += f"""
                <div class='technology-card'>
                    <h4 class='tech-card-title'>{tech_info.get('title', 'N/A')}</h4>
                    <p><strong>Purpose:</strong> {tech_info.get('purpose', 'N/A')}</p>
                    <p><strong>Components:</strong> {tech_info.get('key_components', 'N/A')}</p>
                    <p><strong>Advantages:</strong> {tech_info.get('advantages', 'N/A')}</p>
                    <p><strong>Limitations:</strong> {tech_info.get('limitations', 'N/A')}</p>
                </div>
                """
        html_content += """
            </div>
        </div>
        """
    html_content += "</div>"
    return "<h1>The 5 Best Technology Combinations per constraint</h1>" + html_content

def format_final_technologies_html(technologies_list: list) -> str:
    html_content = "<div class='final-tech-container'>"
    for tech_info in technologies_list:
        if isinstance(tech_info, dict):
            html_content += f"""
            <div class='final-tech-card'>
                <h4 class='final-tech-title'>{tech_info.get('title', 'N/A')}</h4>
                <p><strong>Purpose:</strong> {tech_info.get('purpose', 'N/A')}</p>
                <p><strong>Components:</strong> {tech_info.get('key_components', 'N/A')}</p>
                <p><strong>Advantages:</strong> {tech_info.get('advantages', 'N/A')}</p>
                <p><strong>Limitations:</strong> {tech_info.get('limitations', 'N/A')}</p>
            </div>
            """
    html_content += "</div>"
    return "<h1>The best technologies combinations </h1>" + html_content
    
def process_input_gradio(problem_description: str):
    """
    Processes the input problem description step-by-step for Gradio.
    Returns all intermediate results.
    """
    # Step 1: Set Prompt
    prompt = set_prompt(problem_description)

    # Step 2: Retrieve Constraints
    constraints = retrieve_constraints(prompt)

    # Step 3: Stem Constraints
    constraints_stemmed = stem(constraints, "constraints")
    save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx")
    print(constraints_stemmed)

    # Step 4: Global Tech (already loaded, just acknowledge)
    # save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading

    # Step 5: Get Contrastive Similarities
    result_similarities, matrix = get_contrastive_similarities(
        constraints_stemmed, global_tech, global_tech_embeddings
    )
    save_to_pickle(result_similarities)

    # Step 6: Find Best List Combinations
    best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix)

    # Step 7: Select Technologies
    best_technologies_id = select_technologies(best_combinations)

    # Step 8: Get Technologies by ID
    best_technologies = get_technologies_by_id(best_technologies_id, global_tech)

    print(constraints)

    print(best_combinations)

    print(best_technologies)
    
    # Format outputs for Gradio
    # For Constraints:
    constraints_html = format_constraints_html(constraints)

    # For Best Combinations:
    best_combinations_html = format_best_combinations_html(best_combinations)

    # For Final Technologies:
    final_technologies_html = format_final_technologies_html(best_technologies)


    return (
        prompt,
        constraints_html, # Output HTML for constraints
        best_combinations_html, # Output HTML for best combinations
        ", ".join(map(str, best_technologies_id)), # Still a simple text list
        final_technologies_html # Output HTML for final technologies
    )


# --- Gradio Interface Setup ---
input_problem = gr.Textbox(
    label="Enter Problem Description",
    placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics."
)

output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False)
output_constraints = gr.HTML(label="2. Retrieved Constraints") # Changed to HTML
output_best_combinations = gr.HTML(label="7. Best Technology Combinations Found") # Changed to HTML
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False)
output_final_technologies = gr.HTML(label="9. Final Best Technologies") # Changed to HTML

# Custom CSS for a professional look and specific output styling
custom_css = """
/* General Body and Font Styling */
body {
    font-family: 'Segoe UI', 'Roboto', 'Helvetica Neue', Arial, sans-serif;
    color: #333;
    background-color: #f0f2f5;
}

/* Header Styling */
.gradio-container h1 {
    color: #0056b3; /* A deep blue for the main title */
    text-align: center;
    margin-bottom: 10px;
    font-weight: 600;
    font-size: 2.5em;
    text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}

.gradio-container h2 {
    color: #007bff; /* A slightly lighter blue for subtitles */
    text-align: center;
    margin-top: 0;
    margin-bottom: 30px;
    font-weight: 400;
    font-size: 1.2em;
}

/* Card-like styling for individual components */
.gradio-container .gr-box {
    background-color: #ffffff;
    border-radius: 12px;
    box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
    padding: 20px;
    margin-bottom: 20px;
    border: 1px solid #e0e0e0;
}

/* Input Textbox Styling */
.gradio-container input[type="text"],
.gradio-container textarea {
    border: 1px solid #ced4da;
    border-radius: 8px;
    padding: 12px 15px;
    font-size: 1em;
    color: #495057;
    transition: border-color 0.2s ease-in-out, box-shadow 0.2s ease-in-out;
}

.gradio-container input[type="text"]:focus,
.gradio-container textarea:focus {
    border-color: #007bff;
    box-shadow: 0 0 0 0.2rem rgba(0, 123, 255, 0.25);
    outline: none;
}

/* Button Styling */
.gradio-container button {
    background-color: #28a745; /* A vibrant green for action */
    color: white;
    border: none;
    border-radius: 8px;
    padding: 12px 25px;
    font-size: 1.1em;
    font-weight: 500;
    cursor: pointer;
    transition: background-color 0.2s ease-in-out, transform 0.1s ease-in-out;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.gradio-container button:hover {
    background-color: #218838; /* Darker green on hover */
    transform: translateY(-2px);
}

.gradio-container button:active {
    transform: translateY(0);
}

/* Labels for outputs */
.gradio-container label {
    font-weight: 600;
    color: #495057;
    margin-bottom: 8px;
    display: block; /* Ensure labels are on their own line */
    font-size: 1.1em;
}

/* --- Specific Styling for Outputs --- */

/* 2. Retrieved Constraints Styling */
.constraints-container {
    padding: 15px;
    background-color: #f8f9fa;
    border-radius: 8px;
    border: 1px solid #e9ecef;
    font-family: 'Georgia', serif; /* Different font */
    line-height: 1.6;
    max-height: 300px;
    overflow-y: auto;
}
.constraint-item {
    margin-bottom: 10px;
    padding-bottom: 10px;
    border-bottom: 1px dashed #e0e0e0;
}
.constraint-item:last-child {
    border-bottom: none;
    margin-bottom: 0;
    padding-bottom: 0;
}
.constraint-title {
    font-weight: bold;
    color: #004085; /* Darker blue for constraint titles */
    font-size: 1.1em;
}
.constraint-description {
    color: #333;
    font-size: 1em;
}

/* 7. Best Technology Combinations Found & 9. Final Best Technologies Styling */
.combinations-outer-container, .final-tech-container {
    padding: 15px;
    background-color: #f8f9fa;
    border-radius: 8px;
    border: 1px solid #e9ecef;
    max-height: 500px; /* Adjust as needed */
    overflow-y: auto;
    font-family: 'Trebuchet MS', 'Lucida Grande', 'Lucida Sans Unicode', 'Lucida Sans', Tahoma, sans-serif; /* Different font */
}

.problem-card {
    background-color: #ffffff;
    border: 1px solid #cfe2ff; /* Light blue border for problem card */
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05);
}
.problem-card-title {
    color: #0056b3; /* Deep blue for problem title */
    font-size: 1.4em;
    margin-top: 0;
    margin-bottom: 15px;
    border-bottom: 2px solid #cfe2ff;
    padding-bottom: 10px;
}

.technologies-inner-container {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); /* Responsive grid for technologies */
    gap: 15px;
}

.technology-card, .final-tech-card {
    background-color: #f0faff; /* Very light blue for technology cards */
    border: 1px solid #b0d9ff; /* Slightly darker blue border */
    border-radius: 8px;
    padding: 15px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
    transition: transform 0.2s ease-in-out;
}

.technology-card:hover, .final-tech-card:hover {
    transform: translateY(-3px);
}

.tech-card-title, .final-tech-title {
    color: #007bff; /* Gradio's primary blue */
    font-size: 1.2em;
    margin-top: 0;
    margin-bottom: 10px;
    font-weight: 600;
}

.technology-card p, .final-tech-card p {
    font-size: 0.95em;
    line-height: 1.5;
    margin-bottom: 5px;
    color: #555;
}
.technology-card p strong, .final-tech-card p strong {
    color: #004085; /* Darker blue for bold labels */
}

/* Responsive adjustments */
@media (max-width: 768px) {
    .gradio-container {
        padding: 15px;
    }
    .gradio-container h1 {
        font-size: 2em;
    }
    .gradio-container button {
        width: 100%;
        padding: 15px;
    }
    .technologies-inner-container {
        grid-template-columns: 1fr; /* Stack columns on smaller screens */
    }
}
"""

# Create the Gradio Blocks demo with custom theme and CSS
with gr.Blocks(
    theme=gr.themes.Soft(),
    css=custom_css
) as gradio_app_blocks:
    gr.Markdown("# Insight Finder: Step-by-Step Technology Selection")
    gr.Markdown("## Enter a problem description to see how relevant technologies are identified through various processing steps.")

    with gr.Row():
        with gr.Column(scale=2):
            input_problem.render()
        with gr.Column(scale=1):
            gr.Markdown("Click to start the analysis:"),
            process_button = gr.Button("Process Problem", elem_id="process_button")
        

    gr.Markdown("---")
    gr.Markdown("### Processing Steps & Results:")

    with gr.Row():
        with gr.Column():
            output_prompt.render()
            output_constraints.render() # Renders HTML
        with gr.Column():
            output_selected_ids.render() # This remains a Textbox
            output_best_combinations.render() # Renders HTML
            output_final_technologies.render() # Renders HTML

    process_button.click(
        fn=process_input_gradio,
        inputs=input_problem,
        outputs=[
            output_prompt,
            output_constraints,
            output_best_combinations,
            output_selected_ids,
            output_final_technologies
        ]
    )

gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio")