File size: 11,369 Bytes
a004b34
5ec7b71
 
 
 
 
a004b34
c947ea7
a004b34
 
c947ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ec7b71
c947ea7
 
 
 
5ec7b71
c947ea7
 
 
 
5ec7b71
 
 
a004b34
5ec7b71
a004b34
c947ea7
a004b34
 
c947ea7
 
5ec7b71
c947ea7
5ec7b71
 
c947ea7
 
 
a004b34
c947ea7
a004b34
c947ea7
 
 
a004b34
c947ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a004b34
 
 
 
 
 
 
 
c947ea7
 
 
 
 
a004b34
c947ea7
 
 
 
 
 
 
 
 
 
 
5ec7b71
c947ea7
 
 
 
 
a004b34
c947ea7
 
a004b34
c947ea7
a004b34
c947ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a004b34
c947ea7
 
 
a004b34
c947ea7
a004b34
c947ea7
 
 
 
 
 
5ec7b71
 
c947ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a004b34
c947ea7
5ec7b71
c947ea7
 
5ec7b71
 
 
 
a004b34
c947ea7
 
 
a004b34
 
c947ea7
 
 
 
 
 
 
 
 
5ec7b71
 
c947ea7
 
 
5ec7b71
c947ea7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# app.py

import os
import pandas as pd
import chardet
import logging
import gradio as gr
from typing import Optional, List, Tuple, ClassVar, Dict

from sentence_transformers import SentenceTransformer, util, CrossEncoder
from langchain.llms.base import LLM
import google.generativeai as genai

###############################################################################
# 1) Logging Setup
###############################################################################
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("Daily Wellness AI")

###############################################################################
# 2) API Key Handling and Enhanced GeminiLLM Class
###############################################################################
def clean_api_key(key: str) -> str:
    """Remove non-ASCII characters and strip whitespace from the API key."""
    return ''.join(c for c in key if ord(c) < 128).strip()

# Load the GEMINI API key from environment variables
gemini_api_key = os.environ.get("GEMINI_API_KEY")

if not gemini_api_key:
    logger.error("GEMINI_API_KEY environment variable not set.")
    raise EnvironmentError("Please set the GEMINI_API_KEY environment variable.")

gemini_api_key = clean_api_key(gemini_api_key)
logger.info("GEMINI API Key loaded successfully.")

# Configure Google Generative AI
try:
    genai.configure(api_key=gemini_api_key)
    logger.info("Configured Google Generative AI with provided API key.")
except Exception as e:
    logger.error(f"Failed to configure Google Generative AI: {e}")
    raise e

class GeminiLLM(LLM):
    model_name: ClassVar[str] = "gemini-2.0-flash-exp"
    temperature: float = 0.7
    top_p: float = 0.95
    top_k: int = 40
    max_tokens: int = 2048

    @property
    def _llm_type(self) -> str:
        return "custom_gemini"

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        generation_config = {
            "temperature": self.temperature,
            "top_p": self.top_p,
            "top_k": self.top_k,
            "max_output_tokens": self.max_tokens,
        }

        try:
            logger.debug(f"Initializing GenerativeModel with config: {generation_config}")
            model = genai.GenerativeModel(
                model_name=self.model_name,
                generation_config=generation_config,
            )
            logger.debug("GenerativeModel initialized successfully.")

            chat_session = model.start_chat(history=[])
            logger.debug("Chat session started.")

            response = chat_session.send_message(prompt)
            logger.debug(f"Prompt sent to model: {prompt}")
            logger.debug(f"Raw response received: {response.text}")

            return response.text
        except Exception as e:
            logger.error(f"Error generating response with GeminiLLM: {e}")
            logger.debug("Exception details:", exc_info=True)
            raise e

# Instantiate the GeminiLLM globally
llm = GeminiLLM()

###############################################################################
# 3) CSV Loading and Processing
###############################################################################
def load_csv(file_path: str):
    try:
        if not os.path.isfile(file_path):
            logger.error(f"CSV file does not exist: {file_path}")
            return [], []
        
        with open(file_path, 'rb') as f:
            result = chardet.detect(f.read())
            encoding = result['encoding']

        data = pd.read_csv(file_path, encoding=encoding)
        if 'Question' not in data.columns or 'Answers' not in data.columns:
            raise ValueError("CSV must contain 'Question' and 'Answers' columns.")
        data = data.dropna(subset=['Question', 'Answers'])

        logger.info(f"Loaded {len(data)} entries from {file_path}")
        return data['Question'].tolist(), data['Answers'].tolist()
    except Exception as e:
        logger.error(f"Error loading CSV: {e}")
        return [], []

# Path to your CSV file (ensure 'AIChatbot.csv' is in the repository)
csv_file_path = "AIChatbot.csv"
corpus_questions, corpus_answers = load_csv(csv_file_path)
if not corpus_questions:
    raise ValueError("Failed to load the knowledge base.")

###############################################################################
# 4) Sentence Embeddings & Cross-Encoder
###############################################################################
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
try:
    embedding_model = SentenceTransformer(embedding_model_name)
    logger.info(f"Loaded embedding model: {embedding_model_name}")
except Exception as e:
    logger.error(f"Failed to load embedding model: {e}")
    raise e

try:
    question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
    logger.info("Encoded question embeddings successfully.")
except Exception as e:
    logger.error(f"Failed to encode question embeddings: {e}")
    raise e

cross_encoder_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
try:
    cross_encoder = CrossEncoder(cross_encoder_name)
    logger.info(f"Loaded cross-encoder model: {cross_encoder_name}")
except Exception as e:
    logger.error(f"Failed to load cross-encoder model: {e}")
    raise e

###############################################################################
# 5) Retrieval + Re-Ranking
###############################################################################
class EmbeddingRetriever:
    def __init__(self, questions, answers, embeddings, model, cross_encoder):
        self.questions = questions
        self.answers = answers
        self.embeddings = embeddings
        self.model = model
        self.cross_encoder = cross_encoder

    def retrieve(self, query: str, top_k: int = 3):
        try:
            query_embedding = self.model.encode(query, convert_to_tensor=True)
            scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
            scored_data = sorted(zip(self.questions, self.answers, scores), key=lambda x: x[2], reverse=True)[:top_k]

            cross_inputs = [[query, candidate[0]] for candidate in scored_data]
            cross_scores = self.cross_encoder.predict(cross_inputs)

            reranked = sorted(zip(scored_data, cross_scores), key=lambda x: x[1], reverse=True)
            final_retrieved = [(entry[0][1], entry[1]) for entry in reranked]
            logger.debug(f"Retrieved and reranked answers: {final_retrieved}")
            return final_retrieved
        except Exception as e:
            logger.error(f"Error during retrieval: {e}")
            logger.debug("Exception details:", exc_info=True)
            return []

retriever = EmbeddingRetriever(corpus_questions, corpus_answers, question_embeddings, embedding_model, cross_encoder)

###############################################################################
# 6) Answer Expansion
###############################################################################
class AnswerExpander:
    def __init__(self, llm: GeminiLLM):
        self.llm = llm

    def expand(self, query: str, retrieved_answers: List[str]) -> str:
        try:
            reference_block = "\n".join(f"- {idx+1}) {ans}" for idx, ans in enumerate(retrieved_answers, start=1))
            prompt = (
                f"You are Daily Wellness AI, a friendly wellness expert. Below are multiple "
                f"potential answers retrieved from a local knowledge base. You have a user question.\n\n"
                f"Question: {query}\n\n"
                f"Retrieved Answers:\n{reference_block}\n\n"
                "Please synthesize these references into a single cohesive, creative, "
                "and brand-aligned response. Add practical tips and positivity, and end "
                "with a short inspirational note.\n\n"
                "Disclaimer: This is general wellness information, not a substitute for professional medical advice."
            )
            logger.debug(f"Generated prompt for answer expansion: {prompt}")
            response = self.llm._call(prompt)
            logger.debug(f"Expanded answer: {response}")
            return response.strip()
        except Exception as e:
            logger.error(f"Error expanding answer: {e}")
            logger.debug("Exception details:", exc_info=True)
            return "Sorry, an error occurred while generating a response."

answer_expander = AnswerExpander(llm)

###############################################################################
# 7) Query Handling
###############################################################################
def handle_query(query: str) -> str:
    if not query or not isinstance(query, str) or len(query.strip()) == 0:
        return "Please provide a valid question."

    try:
        retrieved = retriever.retrieve(query)
        if not retrieved:
            return "I'm sorry, I couldn't find an answer to your question."
        responses = [ans[0] for ans in retrieved]
        expanded_answer = answer_expander.expand(query, responses)
        return expanded_answer
    except Exception as e:
        logger.error(f"Error handling query: {e}")
        logger.debug("Exception details:", exc_info=True)
        return "An error occurred while processing your request."

###############################################################################
# 8) Gradio Interface
###############################################################################
def gradio_interface(query: str):
    try:
        response = handle_query(query)
        formatted_response = (
            f"**Daily Wellness AI**\n\n"
            f"{response}\n\n"
            "Disclaimer: This is general wellness information, "
            "not a substitute for professional medical advice.\n\n"
            "Wishing you a calm and wonderful day!"
        )
        return formatted_response
    except Exception as e:
        logger.error(f"Error in Gradio interface: {e}")
        logger.debug("Exception details:", exc_info=True)
        return "**An error occurred while processing your request. Please try again later.**"

interface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Textbox(
        lines=2,
        placeholder="e.g., What is box breathing?",
        label="Ask Daily Wellness AI"
    ),
    outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
    title="Daily Wellness AI",
    description="Ask wellness-related questions and receive synthesized, creative answers.",
    theme="default",
    examples=[
        "What is box breathing and how does it help reduce anxiety?",
        "Provide a daily wellness schedule incorporating box breathing techniques.",
        "What are some tips for maintaining good posture while working at a desk?"
    ],
    allow_flagging="never"
)

###############################################################################
# 9) Launch Gradio
###############################################################################
if __name__ == "__main__":
    try:
        # For Hugging Face Spaces, set share=False
        interface.launch(server_name="0.0.0.0", server_port=7860, debug=False)
    except Exception as e:
        logger.error(f"Failed to launch Gradio interface: {e}")
        logger.debug("Exception details:", exc_info=True)