Spaces:
Runtime error
Runtime error
import gradio as gr | |
import nltk | |
import random | |
import numpy as np | |
import torch | |
from transformers import T5ForConditionalGeneration,T5Tokenizer | |
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base') | |
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
summary_model = summary_model.to(device) | |
nltk.download('punkt') | |
nltk.download('brown') | |
nltk.download('wordnet') | |
from nltk.corpus import wordnet as wn | |
from nltk.tokenize import sent_tokenize | |
def set_seed(seed: int): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
set_seed(42) | |
def postprocesstext (content): | |
final="" | |
for sent in sent_tokenize(content): | |
sent = sent.capitalize() | |
final = final +" "+sent | |
return final | |
def summarizer(text,model,tokenizer): | |
text = text.strip().replace("\n"," ") | |
text = "summarize: "+text | |
# print (text) | |
max_len = 512 | |
encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device) | |
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"] | |
outs = model.generate(input_ids=input_ids, | |
attention_mask=attention_mask, | |
early_stopping=True, | |
num_beams=3, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
min_length = 75, | |
max_length=300) | |
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs] | |
summary = dec[0] | |
summary = postprocesstext(summary) | |
summary= summary.strip() | |
return summary | |
demo = gr.Interface(fn=summarizer, inputs="text", outputs="text") | |
demo.launch() | |