File size: 4,953 Bytes
2bab301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fcc21
 
 
9473f6e
 
 
 
 
a1fcc21
90f3345
a1fcc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a9b1e
 
 
 
 
 
 
 
 
 
 
 
8247e44
a1fcc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a9b1e
 
 
 
 
 
 
 
 
90f3345
54a9b1e
 
a1fcc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bab301
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import altair as alt
import plotly.figure_factory as ff
import pydeck as pdk
from vega_datasets import data as vds
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit_image_comparison import image_comparison


def on_input_change():
    user_input = st.session_state.user_input
    st.session_state.past.append(user_input)
    st.session_state.generated.append(
        {"data": "The messages from Bot\nWith new line", "type": "normal"}
    )


def on_btn_click():
    del st.session_state.past[:]
    del st.session_state.generated[:]


def main():
    st.write("Hello, world!")
    st.header(" Al Generated this app - spotify recommendations")
    st.subheader(" this application contains the auto generated layout")
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        st.write("Hello, world!")
    with col2:
        option = st.selectbox(
            " gender / male / female", [" gender ", " male ", " female"]
        )
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        value = st.slider(
            " max predictions", min_value=0, max_value=100, value=50, key=39
        )
    with col2:
        value = st.slider(
            " num categories", min_value=0, max_value=100, value=50, key=81
        )
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        option = st.radio("Choose an option:", ["Option 1", "Option 2", "Option 3"])
    with col2:
        if st.checkbox("Check me"):
            st.write("Checkbox checked!")
    if st.button(" generate recommendations"):
        st.write("Button clicked!")
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        st.table(
            {
                "Country": ["USA", "Canada", "UK", "Australia"],
                "Population (millions)": [331, 38, 66, 25],
                "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
            }
        )
    with col2:
        st.line_chart(
            pd.DataFrame(
                {
                    "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
                        "Adj Close"
                    ],
                    "Google": yf.download(
                        "GOOGL", start="2023-01-01", end="2023-07-31"
                    )["Adj Close"],
                    "Microsoft": yf.download(
                        "MSFT", start="2023-01-01", end="2023-07-31"
                    )["Adj Close"],
                }
            )
        )
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        data = pd.DataFrame(
            {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
        )
        st.area_chart(data)
    with col2:
        st.bar_chart(
            pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
        )
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        st.write("Hello, world!")
    with col2:
        df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
        fig = px.pie(
            df,
            values="pop",
            names="country",
            title="Population of American continent",
            hover_data=["lifeExp"],
            labels={"lifeExp": "life expectancy"},
        )
        fig.update_traces(textposition="inside", textinfo="percent+label")
        st.plotly_chart(fig)
    source = vds.cars()
    chart = {
        "mark": "point",
        "encoding": {
            "x": {"field": "Horsepower", "type": "quantitative"},
            "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
            "color": {"field": "Origin", "type": "nominal"},
            "shape": {"field": "Origin", "type": "nominal"},
        },
    }
    tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
    with tab1:
        st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
    with tab2:
        st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        st.video("https://www.youtube.com/watch?v=50hVvC7gMR8&t=5s", format="video/mp4")
    with col2:
        st.image(
            "https://assets-global.website-files.com/59e16042ec229e00016d3a66/6441d5f76d21e1e4dee9ffa2_Gen%20AI%20blog_Blog%20hero.png",
            caption="Image Caption",
        )
    st.plotly_chart(
        ff.create_distplot(
            [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
            ["Negative Shift", "Normal", "Positive Shift"],
            bin_size=[0.1, 0.25, 0.5],
        ),
        use_container_width=True,
    )
    st.header(" auto generated by sketch2streamiit")


if __name__ == "__main__":
    main()