LLMAppp / app.py
Praveen998's picture
Upload folder using huggingface_hub
a1fcc21
raw
history blame
4.95 kB
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import altair as alt
import plotly.figure_factory as ff
import pydeck as pdk
from vega_datasets import data as vds
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit_image_comparison import image_comparison
def on_input_change():
user_input = st.session_state.user_input
st.session_state.past.append(user_input)
st.session_state.generated.append(
{"data": "The messages from Bot\nWith new line", "type": "normal"}
)
def on_btn_click():
del st.session_state.past[:]
del st.session_state.generated[:]
def main():
st.write("Hello, world!")
st.header(" Al Generated this app - spotify recommendations")
st.subheader(" this application contains the auto generated layout")
(
col1,
col2,
) = st.columns(2)
with col1:
st.write("Hello, world!")
with col2:
option = st.selectbox(
" gender / male / female", [" gender ", " male ", " female"]
)
(
col1,
col2,
) = st.columns(2)
with col1:
value = st.slider(
" max predictions", min_value=0, max_value=100, value=50, key=39
)
with col2:
value = st.slider(
" num categories", min_value=0, max_value=100, value=50, key=81
)
(
col1,
col2,
) = st.columns(2)
with col1:
option = st.radio("Choose an option:", ["Option 1", "Option 2", "Option 3"])
with col2:
if st.checkbox("Check me"):
st.write("Checkbox checked!")
if st.button(" generate recommendations"):
st.write("Button clicked!")
(
col1,
col2,
) = st.columns(2)
with col1:
st.table(
{
"Country": ["USA", "Canada", "UK", "Australia"],
"Population (millions)": [331, 38, 66, 25],
"GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
}
)
with col2:
st.line_chart(
pd.DataFrame(
{
"Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
"Adj Close"
],
"Google": yf.download(
"GOOGL", start="2023-01-01", end="2023-07-31"
)["Adj Close"],
"Microsoft": yf.download(
"MSFT", start="2023-01-01", end="2023-07-31"
)["Adj Close"],
}
)
)
(
col1,
col2,
) = st.columns(2)
with col1:
data = pd.DataFrame(
{"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
)
st.area_chart(data)
with col2:
st.bar_chart(
pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
)
(
col1,
col2,
) = st.columns(2)
with col1:
st.write("Hello, world!")
with col2:
df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
fig = px.pie(
df,
values="pop",
names="country",
title="Population of American continent",
hover_data=["lifeExp"],
labels={"lifeExp": "life expectancy"},
)
fig.update_traces(textposition="inside", textinfo="percent+label")
st.plotly_chart(fig)
source = vds.cars()
chart = {
"mark": "point",
"encoding": {
"x": {"field": "Horsepower", "type": "quantitative"},
"y": {"field": "Miles_per_Gallon", "type": "quantitative"},
"color": {"field": "Origin", "type": "nominal"},
"shape": {"field": "Origin", "type": "nominal"},
},
}
tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
with tab1:
st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
with tab2:
st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
(
col1,
col2,
) = st.columns(2)
with col1:
st.video("https://www.youtube.com/watch?v=50hVvC7gMR8&t=5s", format="video/mp4")
with col2:
st.image(
"https://assets-global.website-files.com/59e16042ec229e00016d3a66/6441d5f76d21e1e4dee9ffa2_Gen%20AI%20blog_Blog%20hero.png",
caption="Image Caption",
)
st.plotly_chart(
ff.create_distplot(
[np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
["Negative Shift", "Normal", "Positive Shift"],
bin_size=[0.1, 0.25, 0.5],
),
use_container_width=True,
)
st.header(" auto generated by sketch2streamiit")
if __name__ == "__main__":
main()